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ABSTRACT

HIGH-PRECISION TIME-SERIES PHOTOMETRY FOR THE DISCOVERY AND

CHARACTERIZATION OF TRANSITING EXOPLANETS

Karen A. Collins

April 17, 2015

The discovery of more than a thousand planets orbiting stars other than the Sun

(i.e. exoplanets) over the past 20 years has shown that planetary systems are commonplace

in the Milky Way galaxy. However, these discoveries are only a starting point in the quest

to answer one of the most compelling questions posed by mankind for centuries – "are we

alone in the universe?". This research aims to help build the foundation needed to search

for that answer by optimizing data reduction techniques, determining and refining

fundamental properties of known exoplanets, and searching for new exoplanets. Many

exoplanets have been discovered using the radial velocity (RV) technique to measure

small variations in a star’s motion that are gravitational induced by an orbiting planet. The

RV signal reveals the planetary mass, orbital period, and orbital eccentricity. If an

exoplanet crosses the face of its host star (i.e. transits) from the perspective of the

observer, it causes an apparent periodic dimming of the star. The depth and shape of those

brightness variations reveal the planet’s radius, its transit time, and some orbital

characteristics. Combining the mass and radius measurements, a planet’s mean density

can be calculated, thus constraining its composition. During transit, part of the star’s light

v



passes through the planetary atmosphere on its way to Earth, facilitating atmospheric

measurements. Monitoring a planet’s transit timing variations (TTVs) on many epochs

may reveal the presence of another planet in the system due to gravitational interactions. I

report the development of a new tool, AstroImageJ (AIJ), that provides an interactive

environment for the optimal extraction and analysis of high-precision photometry from

time-series observations. Based on AIJ photometry, I report high-precision measurements

of system parameters and tight upper limits on TTVs derived from global analyses of 23

WASP-12b and 18 Qatar-1b complete transits. I also report the detection of sodium in the

atmosphere of the exoplanet HD 189733b, the detection of z′ band emission from the

recently discovered hot brown dwarf, KELT-1b, and the discovery and characterization of

the transiting hot-Saturn exoplanet, KELT-6b. Data for this research have been collected

using the research-grade 0.6 m Moore Observatory RC (MORC) telescope, which is

located near Louisville, Kentucky, and operated by the University of Louisville.
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CHAPTER 1

INTRODUCTION

The answer to one of the most compelling questions – "are we alone in the

universe?" has been debated by mankind for centuries from both philosophical and

scientific perspectives. The technological revolution of the 20th century has enabled

astronomers to collect direct evidence to help shape the scientific perspective. The

discovery of over a thousand planets orbiting stars other than the Sun (i.e. extra-solar

planets or exoplanets) over the past 20 years has confirmed that the Sun is not unique

among stars in hosting planets. However, these discoveries are only a starting point in the

quest to determine if life exists beyond our solar system.

Perhaps a more practical question for scientists to answer in the near term is – "do

conditions exist on planets outside the solar system that could support life as we

understand it here on Earth?" The National Research Council Decadal Survey of

Astronomy and Astrophysics (NRC, 2010) specifies seeking nearby habitable planets as

one of three priority science objectives for the decade 2012-2021. More specifically, the

report states "The ultimate goal is to image rocky planets that lie in the habitable zone – at

a distance from their central star where water can exist in liquid form – and to characterize

their atmospheres. In its astrobiology roadmap (Des Marais et al., 2008), NASA defines

the principal habitability criteria as "extended regions of liquid water, conditions favorable

for the assembly of complex organic molecules, and energy sources to sustain

metabolism." This research focuses on the discovery of new exoplanets and measuring

fundamental characteristics of known and new exoplanets such as mass, radius, density,

temperature, orbital parameters, atmospheric composition, etc., which have a direct

impact on the habitability of an exoplanet. This research has been conducted using the
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0.6 m, research-grade, Moore Observatory RC (MORC) telescope located near Louisville,

Kentucky. Moore observatory is operated by the University of Louisville. The results of

this program could couple into larger-scale ground-based, as well as NASA space-based

programs.

1.1 Star and Planet Formation

Although the study of young stellar environments, with the goal of furthering our

understanding of how stars and planetary systems form, continues to be a topic of intense

astrophysical research, much progress has already been made. I provide a brief summary

of our current understanding of star and planet formation here, but see Collins (2008) for a

more detailed overview. The standard model of the birth of a star (Shu, Adams, & Lizano,

1987) from a molecular cloud (mostly H2 gas) begins with the formation of a slowly

rotating dense core in the molecular cloud. As the cloud condenses, its core crosses a

threshold of instability and collapses from inside-out. Material with low angular

momentum collapses under its own gravity to form the protostar and material with higher

angular momentum starts to collapse into a rotating disk structure (i.e. a protoplanetary

disk). Some of the disk material accretes onto the star, but accretion eventually slows.

Collapse of the remaining material onto the disk continues, which increases the opening

angle of the stellar outflow, and eventually fully reveals the star and protoplanetary disk.

As the disk cools, it is thought that small dust grains form, which may eventually

coagulate into kilometer-sized planetesimals. Depending on disk characteristics, runaway

disk accretion onto the planetesimals may create larger protoplanets. Collisions and

mergers of protoplanets are thought to eventually produce terrestrial planets. The

protoplanets of gas giants are thought to form in the same way as terrestrial protoplanets,

but they form beyond the snow line (the distance from the central star where volatiles

condense into solid ice grains). Since the disk material is solid ice, gas giant protoplanets

can be several times more massive than terrestrial protoplanets. After a protoplanet

reaches a critical mass of 5 − 10 MEarth, gas from the disk starts to accrete onto the
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protoplanetary core. The accretion continues until the gas in the disk near the planet is

exhausted. Ice giants like Uranus and Neptune are thought to be cores that formed after

most of the disk had disappeared. A detailed review of planet formation theory is provided

in Lissauer (1993).

Changes to a planet’s orbital period and/or eccentricity, called planet migration,

can occur through planet interactions with nearby disk material, through gravitational

scattering by other planets, or through tides between the host star and planet. Planet

migration is complex and our current understanding of all the mechanisms is incomplete.

Ford (2014) provides a review of the current understanding of the late-stages of the

evolution of planetary systems, including migration theory. Also see Benítez-Llambay,

Masset, Koenigsberger, & Szulágyi (2015) for the recent report of a proposed "heating

torque" mechanism that can, under certain circumstances, prevent newly forming gas

giant cores from migrating in towards their parent stars. This mechanism could explain

why ∼ 15% of planetary systems, including our own solar system, have a gas giant planet

surviving at orbits beyond 1 AU. Their computer simulations show that the accretion of

small bodies onto the planetary embryo heats the gas nearby, causing it to expand. The

region behind expands more than the region ahead, resulting in an increase in the

embryo’s angular momentum that can overcome the loss in angular momentum due to

gravitational interactions with the disk.

1.2 The Discovery of Exoplanets

Until just over 20 years ago, the understanding of planetary system formation and

evolution was constrained only by the properties of the planets in our solar system. Then,

the first legitimate discovery of (two) planets outside our solar system was announced by

Wolszczan & Frail (1992). The planetary system orbits a neutron star (the supernova

remnant of a star with mass & 8 M⊙), which is a millisecond radio pulsar known as

PSR1257+12. The planets were discovered through high-precision timing of the radiation

beaming from the host star. This radiation is deadly to life as we know it, so these planets
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were designated "dead worlds". The planets are believed to be the rocky cores of former

gas giants or planets formed from the supernova remnants in a second round of planet

formation.

Three years later, Mayor & Queloz (1995) announced the discovery of the first

exoplanet found to orbit another sun-like star. The 0.5MJ planet in a 4.2 day orbit around

the star 51 Peg was discovered while conducting a survey of 142 G and K dwarf stars with

a radial velocity (see §1.4.2) precision of 13 m s−1, which is high enough to detect

Jupiter-mass or higher sub-stellar companions. Gas giants were not generally expected to

exist in orbits so close to the host star, since planet formation theory implied that gas

giants must form beyond the snow line. This discovery of the first hot Jupiter, and the

many other exoplanet discoveries that followed, mandated a reexamination of our

understanding of planetary system formation and evolution. More than 99.9% of all

planets known today orbit stars other than the Sun, so exoplanet data now play a key role

in planet formation and evolution theory.

1.3 Hot Jupiter Formation

Current theory suggests that hot-Jupiters get their start from the formation of a

rocky core at a larger separation from the host star. Then they accrete a gaseous envelope,

and migrate to their "hot" location (Ford, 2014). The mechanism for migration is less

clear, but the measurement of the Rossiter-McLaughlin (RM) effect (see §1.5.2) for many

transiting (see §1.4.3) hot Jupiters has helped show that at least two mechanisms may be

involved. The RM measurements have shown that although the orbital angular momentum

of many planets is well-aligned with the host stars rotational angular momentum, a

significant fraction are severely misaligned. There are differing theories explaining how

misalignment can happen, but Ford (2014) suggests that the well aligned hot Jupiters

migrate as a result of the chaotic interactions of a multi-planet system (Rasio & Ford,

1996), and the misaligned systems are the result of secular interactions with a highly

inclined binary companion (Holman, Touma, & Tremaine, 1997) or a stellar flyby
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(Laughlin & Adams, 1998). In both cases, the migration occurs when the interactions

result in a highly eccentric planetary orbit that passes near the host star. Tidal interactions

with the host star then circularize the planet’s orbit, resulting in the hot Jupiters we observe

today. While the orbit of the planet is circularizing, many believe that the gas giant cleans

out the inner solar system by scattering any rocky planets into the star or to the outer

regions of the planetary system (Mandell, Raymond, & Sigurdsson, 2007; Ford, 2014).

1.4 Exoplanet Discovery Methods

Exoplanet discovery is difficult primarily because the planet is extremely faint

compared to the host star, and the separation between the star and planet on-the-sky is

extremely small. However, several methods have been successfully used for both the

discovery and characterization of exoplanets. Each method has its own advantages,

disadvantages, and selection effects in mass, radius, and semi-major axis parameter space.

1.4.1 Direct Imaging

Direct imaging is the most straightforward method to understand, but is one of the

most difficult to achieve with current technology. The idea is to take an image of the

planetary system that clearly separates the blinding light of the star from the faint light of

the planet. The contrast ratio between a sun-like star and an earth-like planet is

∼ 10−7 − 10−10, depending on the wavelength of the observation. Because of the physics of

diffracted light and the difficulty of managing scattered light in telescopes, the required

contrasts are technologically difficult to achieve. However, a handful of large, massive,

young planets located far from the host star have already been directly imaged (Marois et

al., 2008; Kalas et al., 2008; Kuzuhara et al., 2013). Four to five orders of magnitude

improvement in planet-to-star contrast capability is needed to directly image solar-like

systems.

When direct imaging becomes more generally practical, direct spectroscopy will

also become practical, as long as enough photons are available from the planet. Exoplanet
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spectroscopy will provide a direct measurement of the components of the planet’s

atmosphere and will provide a path to search for potential indicators of life on the planet.

1.4.2 Radial Velocity Method

Gravitational interactions between a star and one or more orbiting planets cause the

star to orbit the center of mass of the star – planet system. The radial velocity (RV)

discovery method takes advantage of the shift in the wavelength of light, due to the

Doppler effect, to measure the velocity of a star along the line-of-sight, as a function of

time. The radial velocity curve of a star (e.g. Figure 59) can be measured accurately by

observing a time-series of high-resolution spectra and comparing the measured

wavelengths of spectral lines to their known stationary wavelengths. For the simplified

case of a single planet system, the period, P, and eccentricity, e, of the planet’s orbit can

be determined directly from the shape of the periodic RV curve. Then the mass of the

planet, mP, can be calculated using the radial velocity equation (Lehmann-Filhés, 1894;

Paddock, 1913),

K =
(

2πG
P

) 1
3 mP sin i

m2/3
∗

1√
1 − e2

(1)

from the mass of the host star, m∗, and the radial velocity semi-amplitude, K, to within a

factor of the sini, where i is the inclination of the orbit relative to the line of sight, and G is

the gravitational constant.

The RV method is responsible for the discovery of the first planet found to orbit a

solar-type star (see §1.2). The RV method was the most successful technique used to find

exoplanets prior to the Kepler mission (see §1.6), producing ∼ 450 RV planet discoveries

so far1. The RV method is most sensitive to more massive planets orbiting near the star.

However, with current technology, 1 m s−1 RV precision has been achieved, which is

sensitive to the RV variations produced by a Neptune mass planet at the distance of Earth

from a solar-type star. The disadvantage of the RV technique is that only the minimum

1The Exoplanet Encyclopedia at http://exoplanet.eu (Schneider et al., 2011)
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mass of the planet can be determined, since the inclination of the orbit cannot be

determined from the RV data alone.

1.4.3 Transit Method

The transit method is sensitive to planets with orbits that take them directly across

of the face of the star from the observer’s perspective. As the dark disk of the planet

passes in front of the disk of the bright star (i.e. transits the star), part of the stellar flux is

blocked by the planet, which causes an apparent dimming of the star (see Figure 1). The

relative brightness of a star can be measured to a precision of better than one part in a

thousand from ground-based telescopes and the Kepler spacecraft has achieved better than

40 parts per million per 6.5 hours of integrated exposure time. Ground-based observations

can easily detect the periodic ∼ 1% apparent dimming of a solar-type star due to a

Jupiter-size object passing in front it, and have so far been responsible for the discovery of

∼ 2001 transiting planets. Kepler can detect planets as small as earth transiting a

solar-type star, and has produced ∼ 10001 confirmed planet discoveries so far. However,

the stars in the Kepler field are generally too faint for detailed characterization studies.

One disadvantage of the transit discovery method is that planets can only be

detected if a chance alignment of the orbit causes the planet to cross the face of its host

star from the perspective of the observer. For a random orientation of circular orbit

inclinations, the probability, p, that a planet (with radius much smaller than that of the

host star) transits is

p =
R∗

a
, (2)

where a is the semimajor axis of the planet’s orbit, and R∗ is the radius of the star. Hot

Jupiter planets orbiting solar-like stars have p ≈ 10%, but planets orbiting at the distance

of the Earth from the Sun have p ∼ 0.5%. Wide field surveys are responsible for the

discovery of most known transiting exoplanets (see §1.6). Since the exposure cadence of

wide-field surveys is generally relatively long and the photometric data can be sparse (for

ground-based surveys in particular), the orbital periods of most known transiting planets
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Primary Transit

Secondary Eclipse

Figure 1. Transiting planet orbital phase diagram illustrating primary transit and secondary
eclipse. The combined flux of the star and planet is observed. During a transit, the flux
drops because the planet blocks a fraction of the starlight. Then the flux rises as the planet’s
dayside comes into view. The flux drops again when the planet is occulted by the star during
secondary eclipse. Adapted from Winn (2010).
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are . 10 days. The result is that transiting planet discovery is biased toward short period

planets, and for ground-based searches, also biased toward planets with radii larger than

Saturn.

Another disadvantage is that there are several astrophysical configurations of

blended eclipsing stellar binary or triple systems that can mimic some of the observable

signatures of transiting planetary companions to single stars (i.e. false positives). There

are however several methods available to help confirm the planetary nature of a

companion, including measurement of mass from radial velocities, investigation of

correlations between bisector span and RV data, exclusion of color-dependent primary

transit observations, exclusion of a detectable secondary eclipse in the optical bands,

exclusion of detectable companions in adaptive-optics imagery, etc. See §8.8 for a

detailed description of false positive analysis and the results for KELT-6b.

The advantage of a transiting planet discovery is that much information about the

system can be determined by fitting a physical model of the system to the light curve data

(see §1.5.1). The planet’s orbital inclination and planetary radius (when combined with an

estimate of the host star radius) are key values that can be estimated from the light curve

data. The inclination, i, enables the true planetary mass to be calculated from the RV

derived minimum mass. The planetary radius can then be combined with the planetary

mass to determine the bulk density of the planet.

When a planet passes in front of its host star, the event is called a primary transit

(or simply transit). When a planet passes behind its host star, the event is called a

secondary eclipse (see Figure 1). The orbital phase and duration of the secondary eclipse

relative to the primary transit places constraints on the shape of the orbit (Sterne, 1940; de

Kort, 1954). The drop in combined brightness measured during secondary eclipse is

proportional to the brightness of the planet relative to the brightness of the star, and thus

provides a measurement of the planet’s combined thermal radiation and reflected stellar

radiation. In optical filter bands, the secondary eclipse should not be detectable with the

precision achievable from ground-based observations. An obvious secondary eclipse in
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optical bands suggests that the apparent primary transit is a false positive, and that a

multi-star blend is masquerading as an apparent transiting planet.

Transiting planets also enable the discovery of additional planets in the system

(§1.4.4), the measurement of the planet’s orbital alignment relative to the host star’s spin

axis (§1.5.2), and the measurement of components in the atmospheres of exoplanets

(§1.5). Interestingly, the stellar mean density can also be calculated strictly from the

parameters of the transit light curve (§1.5.1). Combining the semi-amplitude, eccentricity,

and orbital period from the RV curve, the planet’s surface gravity can be derived without

knowledge of the host star’s properties.

1.4.4 Transit Timing Variations

In a transiting single planet system, the transit of the star happens precisely at a

constant interval equal to the orbital period. If a star hosts multiple planets, the planetary

orbits will no longer be Keplerian due to gravitational interactions between the planets and

the host star, resulting in deviations in the constant transit interval referred to as transit

timing variations (TTVs). The TTV amplitude increases with the orbital period of the

transiting planet and with the mass of the perturbing planet, and is greatly amplified if the

perturbing planet is locked in a low-order orbital resonance with the transiting planet

(Agol et al., 2005). TTVs can be measured to high enough precision, even with

ground-based observations, to detect an Earth-mass planet (that is not necessarily

transiting) in a low-order resonant orbit with the transiting planet (Holman & Murray,

2005; Agol et al., 2005). For example, Agol et al. (2005) show that an Earth-mass planet

in 2:1 resonance with a 3-day period transiting hot Jupiter would cause timing variations

of ∼ 3 minutes, which would be accumulated over a year. Ground based timing precision

can reach 20 − 30 s (see Chapters 5 and 6).

To properly characterize a TTV signal, good phase coverage and a long baseline of

measurements are needed. Ideally, nearly all transits during the baseline period should be

observed. This is of course nearly impossible from the ground due to weather. Plus, for a
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single observatory, many transits during the baseline period will likely occur during

daylight. Veras, Ford, & Payne (2011) show that in most cases at least 50 consecutive

transit observations are necessary to have a reasonable chance of characterizing the

perturbing planet and its orbit.

Even if a TTV curve is well sampled, it is notoriously difficult to uniquely infer the

perturbing planet’s mass and orbital parameters strictly from the TTV data (Ford &

Holman, 2007; Nesvorný & Morbidelli, 2008; Payne, Ford, & Veras, 2010; Boué, Oshagh,

Montalto, & Santos, 2012; Lithwick, Xie, & Wu, 2012). Degeneracies exist in orbital

period, eccentricity, and inclination. RV data, transit duration variations, or systems with

multiple transiting planets can help to break the degeneracies.

So far, no large amplitude TTVs have been reported for planets discovered by

ground-based wide-field transit surveys. However, several authors have claimed evidence

of low-amplitude periodic TTVs, followed by other authors with differing conclusions.

For example, analysis of WASP-3b TTVs by multiple authors has produced differing

conclusions. Maciejewski et al. (2010) analyzed 13 WASP-3b transits and reported a

sinusodal TTV with period ∼ 127 d and peak value ∼ 2 min. Then Eibe et al. (2012)

found a lower significance in the TTV detection, but a possible detection of transit

duration variations. Montalto et al. (2012) studied 38 WASP-3b light curves and found no

evidence of periodicity in the TTVs. Small amplitude TTV claims are inconsistent across

ground-based timing measurement analyses and, so far, no perturber planet has been

confirmed from them.

But, García-Melendo & López-Morales (2011) show that the method typical used

to search for transits in wide-field transit survey data (box-least-squares or BLS, Collier

Cameron et al. 2006), is not sensitive to transits with significant TTVs, which could

explain why no large TTVs have been found in planets discovered by ground-based

surveys.

On the other hand, the almost continuous Kepler light curves have demonstrated a

number of clear TTV detections (e.g Holman et al. 2010; Lissauer et al. 2011; Ballard et
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al. 2011; Steffen et al. 2013; Yang et al. 2013). The Kepler TTV data are responsible for

the discovery of non-transiting planets and provide confirmation of the planetary nature of

the transiting planet(s) and estimates of their masses, without the necessity of RV data.

Steffen et al. (2012) searched six quarters of Kepler data for planetary companions

orbiting near hot Jupiter planet candidates (1 ≤ P ≤ 5 d) by looking for multiple transiting

planets and evidence of TTVs. Special emphasis was given to companions between the

2:1 interior and exterior mean-motion resonances. They found no evidence for nearby

companion planets to 63 hot Jupiter candidates. However, five out of 31 warm Jupiter

systems (6.3 ≤ P ≤ 15.8 d) do show multiple transiting planets and/or evidence of TTVs.

1.4.5 Other Methods

The first known exoplanets were discovered using pulsar timing (see §1.2). Many

other exoplanet discovery methods are in use or have been proposed including

gravitational microlensing, astrometry, additional timing methods, etc., but are beyond the

scope of this work.

1.5 Characterization Methods

Transiting planets offer a wealth of opportunities for characterization of the

planetary system. RV characterization of the companion mass is typically pursued for all

planet candidate discoveries from ground-based wide-field transit surveys, because a mass

determination is a powerful and straight forward false positive indicator, and the host stars

are typically bright enough for cost effective spectroscopic observations using ∼ 1.5 m

telescopes. One exception is for systems with rapidly rotating host stars. Standard RV

measurements require well defined stellar spectral lines. However, rapid rotation smears

(or broadens) the lines causing the spectral shift to be difficult or impossible to measure.

KELT-7 rotates fairly rapidly at vsin i⋆ ∼ 73 km s−1, but Bieryla et al. (2015) use a

combination of low-precision RVs (due to the rapid rotation) and the RM effect (see

§1.5.2) to confirm the planet and measure its mass. Based on work with the KELT survey
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(see §1.6), host stars rotating at & 100 km s−1 are out of reach of current RV techniques.

1.5.1 Primary Transit Light Curve Modeling

Several system parameter values can be extracted from high-precision follow-up

light curves by fitting a physical model of the system to the time-series data. The model

used by the two light curve fitting tools used in this work, AstroImageJ (see §4.1) and

multi-EXOFAST (see §4.3), is described by Mandel & Agol (2002). The transit is

modeled as an eclipse of a spherical star by an opaque planetary sphere. The model is

parameterized by six physical values, plus a baseline flux level, F0. The six physical

parameters are the planetary radius in units of the stellar radius, RP/R∗, the semi-major

axis of the planetary orbit in units of the stellar radius, a/R∗, the transit center time, TC,

the impact parameter of the transit, b, and the quadratic limb darkening parameters, u1 and

u2. The orbital inclination can be calculated from the impact parameter as

i = cos−1
(

b
R∗

a

)
. (3)

A simplified illustration of the transit light curve model is shown in Figure 2. Four

contact times are defined. The time of first contact, t1, is defined as the instant that the

edge of the planet’s disk first touches the edge of the stellar disk. The time of second

contact, t2, is defined as the instant that the planet’s disk has first moved completely inside

the stellar disk. At the time of third contact, t3, the planet’s disk starts to exit the stellar

disk, and at the time of fourth contact, t4, the planet has just moved completely outside the

stellar disk. In a grazing eclipse, second and third contacts do not occur. The time

duration t2 − t1 is the ingress duration and t4 − t3 is the egress duration. For an elliptical

orbit, the ingress and egress durations can be different due to the changing speed of the

planet as it transits the host star. However, the time difference is generally small, so the

single parameter τ is normally used to represent both durations.

Ignoring limb darkening (which is discussed below), the fractional decrease in flux

(i.e. transit depth) during full eclipse (i.e. between t2 and t3) is the ratio of the size of the
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Figure 2. Primary transit model illustrating the relation of model parameters to light curve
features. Adapted from Seager & Deming (2010).
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planet’s disk to the size of the star’s disk, or

δ =
(

RP

R∗

)2

. (4)

The detailed equations describing the fractional flux decrease for all times of the

eclipse are given in Mandel & Agol (2002) and are coded into the fitting routines of

AstroImageJ and multi-EXOFAST. I will show simpler relations here that are more useful

for developing an intuition about how the physical system parameters affect the light

curve shape (see Winn 2010). The very small effects of exoplanetary atmospheric

refraction on the light curve (see Misra & Meadows 2014) have been ignored in this

section. The total transit duration for a circular orbit is

T14 = t4 − t1 =
P
π

sin −1

R∗

a

√
(1 + RP

R∗
)2 − b2

sin i

, (5)

where P is the orbital period of the planet. In the limits RP ≪ R∗ ≪ a and τ ≪ T for

non-grazing planets in circular orbits, the impact parameter and the ratio of the orbital

semi-amplitude to the stellar radius are

b2 = 1 −
√
δ

TFWHM

τ
, (6)

a
R∗

=
δ1/4

π

P√
τTFWHM

, (7)

where TFWHM = [(t4 − t1) + (t3 − t2)]/2 as shown in Figure 2.

As mentioned in §1.4.3, the stellar density, ρ∗, can be derived exclusively from the

light curve parameters, with only one assumption. Using Kepler’s third law, Seager &

Mallén-Ornelas (2003) show that

ρ∗ + δ
3
2ρP =

3π
GP2

(
a

R∗

)3

, (8)

where ρP is the planetary density. With the typically valid assumption that δ3/2ρP is

negligible compared to ρ∗, the stellar density is then:

ρ∗ ≈
3π

GP2

(
a

R∗

)3

. (9)
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The comparison of stellar density derived from the light curve with stellar density derived

from spectroscopy is an important part of false positive analysis (see §8.8).

Limb darkening (Milne, 1921) is an optical effect seen in stars, which causes the

central part of the stellar disk to appear brighter than the edge (or limb). This causes the

bottom part of the transit light curve to be rounded and smears the second and third

contact points (see Figure 3). The limb darkening effect is more pronounced at shorter

(blue) wavelengths than at longer (red) wavelengths. The quadratic limb darkening

parameters, u1 and u2, are not well constrained by typical ground based data, so in this

work, I typically fix the parameters to values from the quadratic limb darkening models of

Claret & Bloemen (2011).

To calculate the physical planetary radius, RP, from the model values that are in

units of R∗ (and the physical planetary mass, MP, from the RV data), the Yonsei-Yale

Stellar Models (Demarque et al., 2004) or the empirical Torres relations (Torres et al.,

2010) can be used to estimate M∗ and R∗ from the spectroscopic properties effective

temperature, Teff, stellar surface gravity, logg⋆, and metallicity, [Fe/H].

The transit model parameter errors are non-Gaussian and are often correlated, so an

alternative to typical error propagation is required to estimate model parameter

uncertainties. Multi-EXOFAST uses Markov Chain Monte Carlo (MCMC) simulations to

estimate parameter uncertainties (see §4.3).

1.5.2 Rossiter-McLaughlin Effect

The Doppler effect causes light to shift in wavelength depending on the velocity of

the emitting source relative to the observer. For each point on the face of a rotating star,

the velocity vector includes contributions from both the stellar motion and the rotational

speed at that point. Since standard spectroscopic observations do not resolve the stellar

disk, the star’s spectral lines are both shifted and broadened due to the motion of the star

and the differing rotational velocity components across the face of the star. When an

exoplanet passes in front of its rotating host star, the stellar disk velocities obscured by the
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Figure 3. An illustration of how limb darkening affects transit light curves. The ten
HD 209458b transit light curves are from HST/STIS spectroscopy. The center wavelength
for each band of integrated wavelengths is shown for each light curve. Notice that limb
darkening affects the bottom curvature and the smearing of contact points two and three
more strongly for shorter wavelengths. Adapted from Knutson et al. (2007). Wavelength
identifications are from Winn (2010).
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planet no longer contribute to the disk integrated spectrum. The result is a bump that

moves through the broadened stellar line profile as the transit progresses (see Figure 4).

The anomaly in the spectral line profile, the Rossiter-Mclaughlin (RM) effect, causes a

shift in the radial velocity derived from the profile. A time-series of spectroscopic

observations covering a full transit will produce a RM waveform.

The shape of the RM waveform reveals vsin i⋆, the sky projected rotation speed of

the stellar surface, and λ, the angle between the sky projections of the stellar spin axis and

the orbit normal. λ provides information about the alignment of the planet’s orbital

angular momentum with the host star’s spin angular momentum (i.e. the planet’s

spin-orbit alignment). Figure 5 shows three example waveforms for different values of λ.

The top left panel shows a planetary orbit that is aligned with the stellar rotation (λ = 0◦)

and the bottom left panel shows the corresponding RM waveform. The planet blocks part

of the stellar disk that is rotating toward the observer during the first half of the transit and

then away from the observer during the last half of the transit. The resulting RM

waveform is anti-symmetric with respect to the nominal RV curve. The middle panels

show an example with λ = 30◦. Note that the RM waveform is no longer anti-symmetric

since the planet occults parts of stellar disk that are rotating away from the observer for

more than half of the transit. The right-hand panels show an example with λ = 60◦. In this

configuration, the planet always covers parts of the stellar disk that are rotating away from

the observer for the entire transit. For this case, the RM waveform is completely below the

nominal RV curve. Multi-EXOFAST optionally fits the analytic formulae of Ohta, Taruya,

& Suto (2005) to the RM data to determine the best fit value of λ.

1.5.3 Characterization of Exoplanet Atmospheres

Given the faintness of exoplanets at the distance of Earth, and the large contrast

ratio of the host star-to-planet brightness, the prospect of studying the atmospheres of

exoplanets is a daunting task. Even so, by taking advantage of special geometric

configurations of transiting systems, favorable system parameters, very large or
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Figure 4. An illustration of the physics of the Rossiter-McLaughlin effect. Top row. Three
successive phases of an exoplanetary transit. The projected stellar rotation speed at each
point has been color coded with blue representing rotation toward and red representing
rotation away from the observer, respectively. Bottom row. Illustration of an observed
stellar absorption line, for the case of purely rotational broadening. The missing velocity
component is manifested as a time-variable bump in the line profile. Adapted from Gaudi
& Winn (2007).
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Figure 5. The dependence of the RM waveform on λ. Three different possible trajectories
of a transiting planet are shown, along with the corresponding RM waveforms (as computed
from the formulae of Ohta, Taruya, & Suto 2005). The trajectories all have the same impact
parameter and produce the same photometric light curve, but they differ in λ and produce
different RM curves. The dashed lines show the nominal RV curve. The dotted lines show
the RM waveform for the case of no limb darkening, and the solid lines show the case for
an arbitrary value of limb darkening. Adapted from Gaudi & Winn (2007).
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space-based telescope, and novel ideas, several atomic and molecular components have

been detected in the atmospheres of a few exoplanets (e.g. Charbonneau et al. 2002;

Vidal-Madjar et al. 2003, 2004; Redfield et al. 2008; Snellen et al. 2008; Lecavelier Des

Etangs et al. 2010).

Transmission Spectroscopy

As a transiting planet crosses the face of its host star, a small part of the stellar flux

passes through the planet’s atmosphere as it travels along its path to the observer (see

primary transit phase in Figure 6). The small fraction of stellar flux with the planet’s

transmission spectrum imprinted on it is mixed with the remaining pure stellar flux.

Certain wavelengths of stellar flux will be absorbed by the planet’s atmosphere depending

on the atomic and molecular components of the atmosphere. At the wavelengths of strong

atomic or molecular absorption, the atmosphere is more opaque, and the planet’s effective

shadow is larger. Therefore, with high enough spectroscopic resolution and

signal-to-noise ratio, a wavelength dependent transit depth should be detectable.

The difference in depth at a strong absorption line depends on the height of the

atmosphere compared to the nominal radius of the planet in broadband optical filters (or

compared to the radius in the continuum of a spectrum). For a strong absorption line, the

planet radius will appear larger by a few atmospheric scale heights H (e.g. Seager &

Sasselov 2000; Brown 2001), where

H =
kT
µmg

, (10)

and k is Boltzmann’s constant, T is the atmosphere’s mean temperature, µm is the mean

molecular mass of the atmosphere, and g is the gravitational acceleration at the surface of

the planet. With RP defined as the nominal planetary radius in broadband optical filters,

the additional depth due to the absorption in one scale height of atmosphere is

∆δ =
(RP + H)2

R2
∗

−
R2

P

R2
∗

=
2HRP + H2

R2
∗

≈ 2δ
(

H
RP

)
, (11)
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- Measure wavelength dependent radius 
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Figure 6. Transiting planet atmosphere diagram illustrating the geometry of transmission
spectroscopy at the primary eclipse, thermal emission spectroscopy at secondary eclipse,
and thermal emission phase curves. Adapted from Seager & Deming (2010).

with the approximation that H ≪ R∗. Using the hot Jupiter exoplanet HD 189733b as an

example, RP ≈ 75,000 km,δ = 0.025, T = 1200 K, g = 25 m s2 (see Table 10), and

estimating µm = 2 amu, the atmospheric scale height is H ≈ 200 km and the depth

difference due to a single scale height of atmosphere is ∆δ ≈ 10−4. Therefore, the total

atmospheric signal should be a few times 10−4.

This wavelength dependent depth should be detectable from high resolution

spectra or from depth measurements in multiple narrow-band filters. Bright host stars are

required to reach a signal-to-noise ratio high enough to detect the 10−4 signal. If the

spectral integration or narrow-band filter includes significant continuum coverage, the ∆δ

signal will be diluted and more difficult to detect. Therefore, the bandwidth of the spectral

integration or filter should be limited such that it includes only the wavelengths of the

broadened line profile of interest.
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Emission Spectroscopy

The thermal emission spectra of a transiting exoplanet can be measured by

comparing the combined stellar plus planet emission spectrum just before secondary

eclipse with the pure stellar spectrum from when the planet is completely hidden by the

star during secondary eclipse (see secondary eclipse phase in Figure 6). The differential

spectrum then represents the disk averaged, day-side, thermal radiation from the planet.

The spectrum is best measured in the near- or mid- infrared where the planet is bright and

the star is dim relative to optical wavelengths. Also, in the optical bands, the differential

spectra could contain some contributions from stellar reflected or scattered light, if the

planetary albedo is relatively high.

Under the assumption that a planet radiates uniformly as a blackbody across its

entire surface, the secondary eclipse depth, in the Rayleigh-Jeans limit, due to thermal

emission, δs,therm is

δs,therm = δ

(
TP

T∗

)
, (12)

where δ is the usual primary transit depth, and TP and T∗ are the planet and star

temperatures, respectively (e.g. Madhusudhan et al. 2014). The planet temperature can be

estimated from the stellar temperature and radius, and the distance between the star and

planet as

TP ≃ T∗

√
R∗

2a
, (13)

where a is the semi-major axis of the planetary orbit (Madhusudhan et al., 2014).

Combining equations 12 and 13, the secondary depth, δs, can then be estimated as

δs = δ

√
R∗

2a
, (14)

in the Rayleigh-Jeans limit, neglecting any scattered or reflected light contributions, and

assuming the planet’s Bond albedo (the fraction of incident light reflected across all

wavelengths) is zero, which is a reasonable approximation for most hot Jupiters (see

Madhusudhan et al. 2014 and references therein). If the planet absorbs and re-radiates all
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of the incident flux on its dayside alone, the predicted temperature will increase by a

factor of 21/4. Using HD 189733b as an example again, the estimated secondary depth

δs = 0.57%. Charbonneau et al. (2008) measured the secondary depth of HD 189733b to

be 0.598%±0.038% at 24 µm from Spitzer Space Telescope times series photometry.

Orbital Phase Variations

Short period (1 . P . 5 d) exoplanets are expected to be tidally locked, with

permanent day and night sides (Guillot et al., 1996). These planets rotate once per orbital

period, which is slower than the 10-17 hour rotation periods of giant planets in the solar

system. Given the difference in incident flux and rotation period from the solar system

giants, it is interesting to investigate what portion of the incident flux energy is transported

to the night side of the planet. Understanding the energy transport will provide constraints

on atmospheric circulation of hot Jupiters. See Showman, Menou, & Cho (2008) for a

review of hot Jupiter atmospheric circulation.

Photometric observations of a complete orbit will provide a measurement of the

combined brightness of the star and planet as the planet goes through all phases from day

side to night side and back. If the observations are in the near- or mid-IR, the mean

temperature of the planetary surfaces facing Earth at each phase of the orbit can be

estimated. Figure 7 shows the phase curve of HD 189733b measured in the Spitzer 4.5 µm

IRAC band. The brightness measured during secondary eclipse sets the baseline stellar

flux level. The difference between the peak flux and the stellar baseline yields the

brightest (and hottest) phase of the orbit. The difference between the lowest flux of the

phase curve (other than when in transit or secondary eclipse) and the baseline stellar flux

indicates the coldest phase of the orbit. Notice that the night side flux of the planet only

dips to about 50% of the dayside flux suggesting heat transfer from the day side to the

night side. In the absence of winds, the hottest and coldest regions of the planet’s

atmosphere are expected to be at the substellar and anti-stellar points, respectively,

corresponding to a flux maximum centered on the secondary eclipse and a flux minimum
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Figure 7. Phase curve of hot Jupiter HD 189733b measured in the Spitzer 4.5 µm IRAC
band. The transit and secondary eclipses are labeled on the upper panel. The lower panel
shows the same data as the upper panel, but with a reduced y axis range in order to better
illustrate the change in flux as a function of orbital phase. The horizontal dashed line shows
the flux level measured during secondary eclipse, and indicates the baseline stellar flux. The
flux from the planet at any given phase can be calculated as the difference between the total
measured flux and the dashed line. Beneath the plot panels is a diagram indicating the part
of the planet that is visible at different orbital phases, with the planet’s day side shown in
white and the night side shown in black. Adapted from Madhusudhan et al. (2014).
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centered on the transit. Note that for HD 189733b, there is a slight shift in the peak

brightness and the full day side phase suggesting that winds are offsetting the hottest part

of the planet from the expected center of the day side.

Reflected Light Detection

Reflected light spectroscopy and photometry is beyond the scope of this work, but I

mention it briefly for completeness. Measurements of the light reflected from hot Jupiter

planets is more challenging than thermal emission because the star-planet contrast ratio is

much larger in the optical bands than in near- to mid-IR bands. Polarimetry is a potential

method to detect reflected light from extrasolar planets. The basic principle is that

reflected light is partially polarized, whereas the direct light emitted by the stellar

photosphere has negligible linear polarization. It has also been suggested that the

detection of specular reflection (or glint) from an exoplanet could reveal the presence of

oceans on the surface (Robinson, Meadows, & Crisp, 2010). Madhusudhan et al. (2014)

list references for several reflected light detections, non-detections, and upper limits. As

this work was in the final stages of review, Martins et al. (2015) reported the first tentative

detection of reflected optical-band light from an exoplanet (51 PEG b).

1.6 Wide-field Transit Surveys

Although a few transiting exoplanets were first discovered by RV searches and then

found to transit later (e.g. HD 209458b, HD 189733b, 55 Cnc e), most transiting

exoplanets have been discovered by wide-field transit surveys. Because RV surveys

started earlier, and because of the chance orbital alignment required for transit discoveries,

many more RV-only planets were discovered initially. Even so, ground-based transit

surveys became productive as the time baseline of observations increased and survey

instrumentation and data processing techniques became more sophisticated. As of 2015,

∼ 200 transiting planets have been discovered by ground based surveys. In 2014, the

number of confirmed space-based transiting planet discoveries surged due to the Kepler
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mission (see §1.6.2) and now the total number of known transiting planets is ∼ 1000,

compared to a total of ∼ 450 RV-only planets. Figure 8 shows the distribution of RV and

transiting planet discoveries by year. The distributions of RV planet discoveries,

ground-based transit discoveries, and space-based transit discoveries are shown by the thin

solid red line, thick solid green line, and dashed black line, respectively. In the following

subsections, I review the key ground- and space-based transit surveys responsible for the

discovery of the first ∼ 1000 known transiting planets. Note the differences in photometric

precision, sky coverage, and host star brightness targeted by the different surveys.

1.6.1 Ground-based

The Optical Gravitational Lensing Experiment (OGLE) was original started in

1992 with the goal of discovering dark matter using the microlensing technique. The third

phase of the project ran from 2001 to 2009 and was primarily devoted to surveying

14 − 17th magnitude stars for the purposes of detecting gravitational microlensing events

and transiting planets with a 1.3 m dedicated telescope at Las Campanas Observatory,

Chile. The project conducted six campaigns of three or four 35′×35′ fields each (Udalski,

2003, 2007). In 2003, the narrow-field, deep OGLE search produced the first transit

method exoplanet discovery, OGLE-TR-56, and eventually discovered a total of 8

transiting planets. However, due to the faintness of the OGLE host stars, false-positive

investigation and detailed characterization of OGLE planets is difficult.

The Trans-atlantic Exoplanet Survey (TrES) was the first wide-field transit

survey. TrES used three small telescopes located at Lowell Observatory, Palomar

Observatory, and the Canary Islands (Alonso et al., 2004). The telescopes had a 100 mm

diameter aperture, a field of view of 6◦×6◦, and a pixel scale of 11′′. TrES produced the

second transiting exoplanet discovery, and the first from a small, wide-field telescope

targeted at relatively bright stars (8 ≤ R ≤ 12.5). The host star has V = 11.79, which

allowed RV follow-up with a modest 1.5 m telescope. The planet, TrES-1b, is a hot

Jupiter with mass 0.75 MJ, radius 1.1 RJ, and orbital period of 3.03 days. The planet is
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Figure 8. RV and transiting planet discoveries by year. The distribution of RV planet
discoveries is shown by the thin solid red lines. The distribution of ground-based transiting
planet discoveries is shown by the thick solid green line. The distribution of space-based
(CoRoT and Kepler) transiting planet discoveries is shown by the dashed black line. The
data were extracted from exoplanets.org on March 10th, 2015.
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typical of the following ∼ 200 transiting exoplanets discovered by ground-based transit

surveys. TrES produced a total of 5 hot Jupiter planets, all having host star brightness of

V ∼ 12. The last TrES planet discovery was announced in 2011, and the survey is no

longer operational.

The XO Project (McCullough et al., 2005) was a wide-field transit survey similar

to TrES. The XO survey’s objective was to find hot Jupiters transiting bright stars

(9 .V . 12), which enabled high-precision follow-up observations. The survey started

observations in 2003 using two ∼ 100 mm aperture telescopes on a common mount

located on the Haleakala summit on Maui, Hawaii. The pointing of the two telescopes

tracked the same location on the sky to increase photon detection, and to provide failure

mode redundancy. The cameras simultaneously observed 7◦ wide strips of the sky in

drift-scan mode. The CCD detector pixel scale was 25′′ pixel−1, more than twice that of

the TrES detectors. The survey’s first planet discovery, XO-1b, orbits a V = 11 sun-like

star (McCullough et al., 2006). In total, the survey produced five transiting hot Jupiter

discoveries (although XO-3b may be a low-mass brown dwarf). The last planet discovery

was announced in 2008.

The Wide Angle Search for Planets (WASP) consortium was established in 2000

and has produced more planets than any other ground-based transit survey. After some

prototype camera testing, the group obtained funding for SuperWASP-N located at the

Observatorio del Roque de los Muchachos on La Palma in the Canary Islands and

SuperWASP-S at the Sutherland Station of the South African Astronomical Observatory

(Pollacco et al., 2006). SuperWASP-N and SuperWASP-S started observations in 2003

and 2005, respectively. Each SuperWASP instrument consists of an equatorial mount on

which up to eight wide-field cameras can be deployed. Each camera has an aperture

diameter of 111 mm, a 7.8◦×7.8◦ field of view, and a pixel scale of 13.′′7 pixels−1. With

eight cameras mounted, the field of view of each multi-detector instrument is ∼ 482 deg2.

The survey targets stars with 9 .V . 13. The first two confirmed SuperWASP planets,

WASP-1b and WASP-2b, were announced in 2007. So far, the Extrasolar Planets
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Encyclopedia lists ∼ 100 transiting hot Jupiter discoveries by WASP.

The Hungarian-made Automated Telescope Network (HATNet) survey (Bakos

et al., 2004, 2007) is a network of seven small telescopes optimized for detecting

transiting hot Jupiter exoplanets. Five of the telescopes are located at the Fred Lawrence

Whipple Observatory (FLWO) at Mount Hopkins in Arizona, and two are located at the

Mauna Kea Observatory in Hawaii. Each telescope has an aperture diameter of 110 mm,

an 8.2◦×8.2◦ field of view, and a pixel scale of 14′′ pixels−1. The first telescopes started

observations in 2003, and the first planet discovery, HAT-P-1b, was announced in 2007

(Bakos et al., 2007). HAT-South is a newer set of six telescope systems in the southern

hemisphere that started observations in 2010 (Bakos et al., 2013). Two multi-camera

telescope systems are located at each of Las Campanas Observatory (LCO) in Chile, the

High Energy Stereoscopic System (HESS) site in Namibia, and at the Siding Spring

Observatory (SSO) in Australia. Each telescope system has a 2×2 array of cameras with

a total field of view of 8.2◦×8.2◦. Each individual camera has an aperture diameter of

180 mm and a pixel scale of 3.′′7 pixels−1. The HAT-South detectors saturate at r′ ∼ 10.5.

HATNet has been the second most productive survey and, so far, has announced 66

transiting exoplanets with host star brightnesses in the range 9 <V < 13.

The Kilodegree Extremely Little Telescope (KELT) transit survey (Pepper et al.,

2003, 2007) aims to fill the brightness gap between RV surveys (V . 8) and the other

wide-field surveys described above (V & 9 − 10). Planet’s with 8 <V < 10 are of

particular interest because they allow for detailed false positive analysis, detailed

planetary system characterization, and atmospheric characterization. The KELT survey

uses single camera telescopes with very wide fields of view. The KELT-North telescope,

shown in the left panel of Figure 9, is located at Winer Observatory near Sonoita, Arizona

and started science operations in 2005. The telescope has a Mamiya 645 80 mm focal

length f/1.9 lens, resulting in a 42 mm aperture diameter, a 26◦×26◦ field of view, and a

pixel scale of 23′′ pixels−1. Over the course of a year, the telescope images 13 survey fields

in a strip around the sky centered at a declination of +30 degrees. The KELT-South
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Figure 9. KELT North and South Telescopes. Left Panel: The KELT-North telescope at
Winer Observatory near Sonoita, Arizona. Right Panel: The KELT-South telescope at the
South African Astronomical Observatory observing station near Sutherland, South Africa.

telescope, shown in the right panel of Figure 9, is a twin of the KELT-North telescope and

is located at the South African Astronomical Observatory (SAAO) observing station near

Sutherland, South Africa and has been operating since 2012. Due to the large pixel scale

of the KELT cameras, KELT photometry suffers from significant blending with nearby

stars in many cases. To help sort out which of the blended stars are exhibiting transit-like

events in the KELT data, and to conduct high-precision follow-up observations, the KELT

team has assembled a world-wide consortium of more than ∼ 30 professional, student, and

high-capability amateur astronomers. The first KELT discovery, KELT-1b, was announced

in 2012 and orbits a V = 10.7 host star. In Chapter 8 of this work, I present KELT-6b,

which is the fourth planet discovery announced by the KELT survey. So far, KELT has

announced five planet discoveries, and at least six more are in the analysis and publication

pipeline. Of these discoveries, the distribution of host brightness includes one V = 7, three

V = 8, two V = 9, and four V = 10. Although the KELT survey is not competing with the

large volume of planet discoveries by SuperWASP and HATNet, it is producing a good

number of very bright, high value exoplanets, as per the original design intent.

The Qatar Exoplanet Survey (QES) (Alsubai et al., 2013) aims to fill the
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brightness gap between the capabilities of OGLE and most of the other wide-field surveys

described above (i.e. 12 <V < 15). The first telescope array is located in New Mexico

and has been operating since 2009. The array consist of 4 cameras targeted at the

12 <V < 15 brightness range and a fifth camera targeted at the 8 <V < 10 brightness

range. The first QES discovery, Qatar-1b, was announced in 2011. So far, QES has

produced two transiting hot Jupiters, both orbiting V ∼ 13 stars.

1.6.2 Space-based

Although the large number of hot Jupiters discovered so far continue to teach us

about planetary system formation and the diversity of planetary systems, the ultimate goal

is the discovery and characterization of earth-like planets in the habitable zone of sun-like

stars, with the hopes of eventually having enough sensitivity to search for signs of life on

the planets. Transits of earth-like planets across sun-like stars produce a small change in a

star’s brightness of 84 parts per million (ppm), or equivalently ∼ 0.09 mmag, lasting for 1

to 16 hours depending on the orbital inclination and period. Ground-based observations

suffer from the detrimental effects of the Earth’s atmosphere on systematics and noise,

and from the limited duration of continuous observations. One obvious (albeit expensive)

solution to overcome both issues is to conduct exoplanet searches from space-based

observatories.

The first space-based transit survey was conducted by Gilliland et al. (2000) using

the Hubble Space Telescope (HST; Adorf 1987). The goal was to determine the frequency

of hot Jupiters. Based on simulations, they expected to find 17 planets in the ensemble of

34,000 main-sequence stars in the globular cluster 47 Tucanae, but no planets were found

in the 8.3 days of time-series observations from the Wide Field Planetary Camera 2

(WFPC2; Trauger & Brown 1992). The reason now favored to explain the null detection is

the cluster’s low metallicity (Weldrake, Sackett, Bridges, & Freeman, 2005).

The COnvection ROtation and planetary Transits (CoRoT) spacecraft (Baglin,

2003) was the first spacecraft dedicated to the study of astro-seismology and the detection
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of transiting extrasolar planets. The mission targeted stars with 11 <V < 16 for the planet

search, and was sensitive enough to detect planets 2× the size of earth for V < 14 and gas

giants over the entire range. It had a 27 cm diameter aperture, a 2.7◦×3.05◦ field of view,

a pixel scale of 2.′′37 pixels−1, and started collecting science data in 2007. Near the start of

the mission, the two-hour photometric precision ranged from 0.1 mmag at R = 11.5 to

1.0 mmag at R = 16 (Aigrain et al., 2009). CoRoT typically observed 3 to 4 different fields

per year for an average of 78 continuous days each. There were two exoplanet detectors

on the spacecraft, but one failed in 2009. A total of 5640 stars per detector could be

observed resulting in a total of more than 150,000 stellar light curves (Moutou et al.,

2013). In total, CoRoT has announced 1 transiting brown dwarf and 21 transiting planet

discoveries, including two super earths. The smallest, CoRoT-7b (Léger et al., 2009;

Queloz et al., 2009), has radius 1.68 R⊕, mass 4.8 M⊕, transit depth 350 ppm, orbital

period 0.85 days, and a G9V host star with brightness V = 11.7. The CoRoT planet radii

range from 0.144 to 1.49 RJ, and the orbital periods range from 0.85 to 95.3 days. The

mission ended when a spacecraft computer failed in 2012.

The Kepler Mission (Borucki et al., 2010) launched in 2009 and conducted a

space-based transit survey that was designed to determine the frequency of earth-sized

planets in and near the habitable zone of sun-like stars. Since the probability that an

earth-like planet transits its sun-like host star is only ∼ 0.5%, the mission was designed to

search more than 100,000 stars, in case earth-like planets are rare. Since habitable zone

planets were desired around sun-like stars, the mission needed to be sensitive to planets

with orbital periods of up to a year. To reliably confirm the periodicity of a transit signal,

four consecutive transits need to be observed. To achieve this goal, the spacecraft was

designed to stare at the same place in the sky for 3.5 years. The fixed location was

selected to be centered in Cygnus at RA = 19h 22m 40s, Dec = 45◦ 30’.

To enable a reliable 4σ detection of the ∼ 80 ppm Earth-Sun transit signal, the

photometric precision needed to be ≤ 20 ppm (including 10 ppm allocated for stellar

variability). Viewed from a distance, Earth would take 13 hours to cross the center of the
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Sun. However, to allow for the detection of earth-like planets that have an orbital

inclination of < 90◦, the goal was set to reach a precision of 20 ppm in 6.5 hours of

integration. This requirement combined with the need to monitor stars with Kepler Mag ≤

12 set the diameter of the telescope aperture to 0.95 m. To continuously and

simultaneously monitor 100,000 stars, the detector field of view was set at 105 square

degrees, and 42 CCDs with a pixel scale of 3.′′98 pixels−1 were designed to cover the field

of view. The detectors were read out every 6 seconds and integrated off-detector to limit

saturation of bright stars, resulting in a dynamic range of coverage of 9 <V < 16. The

telescope was intentionally defocused to give a 10′′ point-spread-function (PSF).

In operation, Kepler reached a combined differential photometric precision

(CDPP), which included photometric and stellar noise, of about 30 ppm for stars with

Kepler Mag = 12 (Caldwell et al., 2010; Lissauer, Dawson, & Tremaine, 2014), rather

than the expected 20 ppm. Nevertheless, a number of studies were conducted to pinpoint

the extra noise sources, and advanced data processing and decorrelation techniques helped

to mitigate the effects to allow reliable detection of 80 ppm signals. In May 2013, the

second of four reaction wheels on the Kepler spacecraft failed, leaving the telescope

unable to point precisely at its original target field, and ending its primary mission. In the

fours years it operated, Kepler produced planet discoveries ranging from the size of

Earth’s Moon at short periods, and larger planets with orbital periods as long as 1-2 years.

Figure 10 (from Lissauer, Dawson, & Tremaine 2014) shows the planetary radius and

orbital period of Kepler planet candidates from the first three years of Kepler data. Planet

multiplicity in the system is represented by different symbols. The legend above the figure

defines the multiplicity represented by each symbol and gives the total number of systems

discovered for each multiplicity.

Only about a third of the Kepler planet candidates have been confirmed as planets.

The difficulty is that RV measurements of stars becomes too time intensive, or even

impossible, for stars as faint as typical Kepler planet hosts. However, from the significant

number of multiple planet systems that have been discovered, many planet masses and
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orbits have been determined solely from TTV data. Kepler determined the distribution of

planets for sun-like stars with reasonable accuracy for RP & 1 RE in the range

P . 50 days, and for RP & 2RE in the range P . 150 days. However, care must be taken to

estimate the mean number of habitable zone earth-like planets, ηE , from Kepler data,

because there are not enough samples to make a statistically reliable prediction. So, one

must extrapolate downward in size and upward in orbital period from the region where

Kepler has a statistically reliable planet sample, which introduces uncertainty. Three

independent studies of Kepler light curves yield ηE = 0.09, ηE = 0.12, and ηE = 0.02 (see

the Kepler review by Lissauer, Dawson, & Tremaine 2014 for details). Clearly the ηE

question has not been completely resolved by the current Kepler data results. However,

more candidates will likely be confirmed as planets, and more candidate systems will be

extracted from the Kepler data over time.

Kepler, with its two remaining reaction wheels, was re-purposed to a new mission,

K2 (Howell et al., 2014), and started collecting data again in June 2014. The K2 mission

points near the ecliptic, observing fields for ∼ 75 days each as it orbits the Sun. K2 is a

community proposal driven project, and although targets can be proposed for a variety of

scientific goals, exoplanet discovery and characterization is a key goal of the mission.

Spacecraft pointing was compromised by the loss of the second reaction wheel and as a

result, photometric precision will be compromised. Early testing has demonstrated that

K2 can reach a photometric precision of 82 ppm for a 12th magnitude star over six hours

of integration. Vanderburg & Johnson (2014) have demonstrated that when accounting for

the non-uniform pixel response function of K2’s detectors, by correlating flux

measurements with spacecraft pointing, improvements by factors of 2-5 over raw K2

photometry can be achieved, resulting in photometric precision similar to Kepler at the

same magnitudes. In the first few months of operation, K2 has already produced

discoveries of two super-earth, multi-planet systems (Armstrong et al., 2015; Crossfield et

al., 2015).
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Figure 10. Kepler planet candidate radius vs. orbital period. Colored symbols represent
the number of planetary candidates in the system found by analyzing the first three years
of Kepler data. The numbers shown above the figure represent the total number of systems
of a given multiplicity. Planets with shorter orbital periods are over-represented because
geometric factors and frequent transits make them easier for Kepler to detect. RE, radius
of Earth; RJ, radius of Jupiter; RM, radius of Mars; RN, radius of Neptune. (from Lissauer,
Dawson, & Tremaine 2014).
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CHAPTER 2

HIGH-PRECISION PHOTOMETRY

Although space-based observatories avoid the detrimental effects of the Earth’s

atmosphere, Earth-based observatories can produce high-precision photometry through

careful planning and execution of the observations, and by taking advantage of many

specialized data reduction techniques that help to minimize the atmospheric effects and

maximize the photometric precision of the final data product. In this chapter, I discuss

how to measure and approach the theoretical limits of high-precision ground-based

photometry.

2.1 CCD Overview

All of the results presented in this work are based on precise measurements of the

brightness of a star of interest (the target star) in a time-series of science images observed

using a charge-coupled device (CCD) detector. See Mackay (1986) for a review of the use

of CCDs in astronomy applications. A CCD has an array of charge collection wells, or

pixels, that convert photons into electrical charge. After being exposed to light, the charge

in the wells is shifted to the edge of the device, where the number of electrons in each well

is converted to a digital value called an analog-to-digital unit (ADU) and is stored in an

image array to be further processed and analyzed. The conversion factor when going from

electrons to ADU is referred to as the gain, G, which is in units of electrons/ADU. The

gain of the two cameras used to collect data for this research is G = 1.5 electrons/ADU.

This process of moving the data out of the CCD is generally referred to as reading the

device, or simply read-out.
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2.2 CCD Image Calibration

CCDs introduce various artifacts, nonlinearities, and noise into the digital

representation of the light detected by each pixel. The Data Processor (DP) module of

AstroImageJ (AIJ; see §4.1) provides the tools needed to optimize the science image data

using various calibration images that can be obtained separate from the science

observations.

2.2.1 Bias Subtraction

CCD detectors exhibit a bias level that creates a shift in the zero point of the digital

value representing the number of photons detected by each pixel. The zero point of each

pixel can be determined by taking a zero second exposure and reading the resulting ADU

values to create a bias image. In this work, I median combine (see §2.2.5) a large number

(21-45) bias images to create a master bias image. This master bias image is then

subtracted from each science, dark, and flat image to set the zero point of the ADU values

back to zero (i.e. zero ADU represents zero photons detected). AIJ’s DP module

automatically generates the master bias image and uses it to calibrate all other calibration

and science images.

2.2.2 CCD Nonlinearity Correction

CCDs are not perfectly linear devices, so the bias-subtracted ADU values are not

exactly proportional to the number of incident photons. When the wells start to fill, the

nonlinear behavior changes to saturation at which point continued exposure to light will

not add charge to the well. The unsaturated nonlinear behavior can be characterized by

taking exposures of varying length of a highly stabilized light source.

To characterize the nonlinearity of the two detectors I used to collect data for this

work, I affixed a piece of plain white paper over the baffle in the center of the telescope

primary mirror and illuminated the paper with the stabilized light source. I set the light
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source brightness such that a 100 sec exposure produced an average of ∼ 50,000 ADU

across the 16-bit detector. After collecting bias frames, I took test exposures of the

illuminated paper ranging in duration from 2 sec to 110-120 sec (which pushed the

detector near saturation at ∼ 60,000 ADU). I also took a 2 sec exposure between all test

exposures to provide a measure of the light source stability. I used the very small

variations in the bias-subtracted 2 sec exposures to adjust the mean ADU values measured

from the bias-subtracted test images.

A plot of scaled exposure time (which represents a scaled version of the actual

number of photons incident on the detector) versus the adjusted mean ADU is shown in

Figure 11. Note that the axes are plotted reversed from typical linearity plots so that the

best second-degree polynomial fit to the data provides the coefficients needed to correct

linearity using AstroImageJ. For simplicity in the values used to correct the nonlinearity, I

desired a zero point corresponding to zero ADUs, so I forced the fit to go through the

origin, and I iteratively scaled the exposure times until the linear coefficient of the fit was

equal to one. The resulting quadratic coefficient of the fitted polynomial was ∼ 8×10−7

for both CCDs measured. It is often stated in the literature that data were obtained from

the linear region of a CCD detector. However, note in the Figure 11 that the full range of

ADUs exhibits some level of nonlinearity, so there is no completely linear region for the

U16M CCD (and likely most CCDs). The result is that linearity correction is useful to

correct all ADU values, regardless of exposure level.

AIJ’s DP module provides the option to correct the nonlinearity in the bias

subtracted science data by replacing the bias-subtracted ADU with the corrected value.

The correction I used in this work is:

ADUcorrected = ADUmeasured + (8×10−7)ADU2
measured, (15)

resulting in a correction of 2000 ADU for a measured value of 50,000 ADU (or about

4%). The CCD specification states that nonlinearity is ≤ 2%. However, if the fit to my test

data is not forced through the origin, the deviation from linearity would be split between

both the high and low ends of the ADU range, resulting in an overall . 2% nonlinearity
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and possibly explaining the manufacturers specification value. AIJ also applies the

nonlinearity correction to the bias-subtracted dark and flat images (see the next two

subsections) before using them to calibrate the science images.

2.2.3 Dark Subtraction

When a CCD is operated with no light incident on its pixels (e.g. by keeping the

camera shutter closed), a charge termed dark current builds up in the wells due to thermal

processes. Dark current can be minimized by cooling the detector, but is always present to

some degree and must be accounted for and removed from the data for high-precision

measurements. Dark current varies from pixel-to-pixel, with the charge in some "hot"

pixels being dominated by dark current. Dark current can be measured for a specific

science exposure time by exposing the CCD for the same exposure time, but with the

camera’s shutter closed. Since dark current is affected by shot noise (see §2.11) and is

thus time varying, I median combine (see §2.2.5) a large number (21-45) of raw dark

images so that the dark current can be determined to high precision for each pixel in the

master dark image.

The raw dark images are first bias subtracted and then scaled for nonlinearity. The

bias subtracted dark images are then median combined to form the master dark image.

AIJ’s DP module will build the master dark image as described here and apply it to the flat

and science images automatically.

Since the master dark has the bias signal removed, if one makes the assumption

that dark current increases linearly over time, then a master dark can be scaled to be

acceptable as a master dark for science images that have exposure times differing from the

dark images. In practice, dark scaling seems to work acceptably well for science images

with exposure times ranging from ∼ 50% to ∼ 150% of the dark exposure time. Some hot

pixels do not seem to scale linearly in time, so exposure time scaling works less favorably

to correct them.

If nonlinearity correction and exposure time scaling are not needed, bias
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Figure 11. MORC U16M CCD linearity measurements. The black dots show scaled ex-
posure time (which represents a scaled version of the actual number of photons incident
on the detector) vs. measured bias subtracted ADU. The red dashed line shows the linear
response. Note that the axes are plotted reversed from typical linearity plots so that the
best second-degree polynomial fit to the data provides the coefficients needed to correct
linearity using AstroImageJ. Also note that there is essentially no completely linear region
in the CCD’s response curve.
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subtraction is not required since the bias signal is combined with the dark current in the

master dark. Since all of my data are corrected for nonlinearity, I have used bias

subtraction separate from dark subtraction for all of my image calibrations.

2.2.4 Flat-field Correction

Pixel sensitivity to a photon flux that is constant across a CCD array varies from

pixel-to-pixel. These inter-pixel sensitivity variations can greatly increase time series

photometric noise if a source falls on different sets of pixels from exposure to exposure.

The sensitivity variations can be measured on a pixel-by-pixel basis by uniformly

illuminating the CCD with a flat-field of light. Optical vignetting and dust specs on optical

surfaces (especially on filters and the glass cover of the CCD, since they are near the focal

plane) will also cause a varying response at each pixel to a flat-field of light, when

observed through a telescope. If a flat-field of light is projected onto the CCD through a

telescope’s optical path, the system-wide response to a flat-field can be determined. Once

this response has been measured, the science images can be divided by the normalized

flat-field response to remove much of the pixel-to-pixel variations.

Two different approaches are widely used to create flat-field images. Dome flats

are obtained by observing a uniformly illuminated surface attached to the telescope

enclosure. Alternately, twilight flats are obtained by observing the clear sky at morning or

evening twilight at elevations near ∼ 45◦ directly opposite the Sun, which provides a

flat-field with a minimal gradient. The amount of residual gradient depends on the angular

size of the field-of-view of the detector.

While dome flats are more convenient to obtain because the observations do not

depend on time critical and time limited ranges of sky brightnesses, it is difficult to

uniformly illuminate the dome flat surface. Because of this, I used twilight flats to

calibrate all science images used in this research. Because the optical response may be

different at different wavelengths of light, and because each filter will have its unique set

of dust specs, the flat-field response must be measured for each filter used.
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To create a master flat-field image in a particular filter during evening twilight, I

start taking 2 s exposures of the twilight sky every minute or so at an elevation near ∼ 45◦

in the east (directly opposite the Sun). Once the sky brightness drops enough that the 2 s

images are no longer saturated, I expose more frequently until the sky brightness reaches a

level that gives an average ADU of ∼ 40,000 counts per pixel in a 5 s exposure. The

exposures before that point are discarded because a significant shutter open/close pattern

is imprinted on images with exposure times less than ∼ 5 s. At this point, I slew the

telescope ∼ 1′ west, take another the 5 s exposure as soon as practical, and repeat as fast

as practical, until the average ADU in the image is down to ∼ 20,000 counts. The twilight

flat-field images will be contaminated with stars, so the telescope slew between exposures

is included to allow the stars to be removed by the data reduction "median" operation

described below. Next, I double the exposure time to 10 sec (which should give an average

of ∼ 40,000 ADU again), slew ∼ 1′ west, expose, and repeat until the average ADU is

again ∼ 20,000 counts. As exposure times become longer, I attempt to extend the

exposure time to keep the average ADU at ∼ 30,000 counts. When the exposure time

reaches ∼ 4 minutes for an average ADU of ∼ 20,000 counts, I stop collecting flat-field

data and prepare for science observations. For morning twilight flats, the process is

similar except the counts are increasing from exposure to exposure, and the telescope is

pointed at ∼ 45◦ elevation in the west.

The individual twilight flat images must be combined to produce a master flat-field

image that is used to calibrate the science images. Calibrating with a flat will increase the

noise of the science image due to the shot noise in the light from the twilight sky. To

minimize the added noise, I attempt to obtain enough raw flats such that the master flat has

∼ 1 mmag per pixel of shot noise. For a CCD gain of G = 1.5, the total counts per pixel

needed is then ∼ 650,000 (see §2.11). Since most of the measurements I make combine

the ADUs of hundreds of pixels, the noise contributed by the flat-field operation is then a

negligible component of the total measurement noise (again, see §2.11).

To create the master flat image, each raw twilight flat is bias-subtracted using the
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master bias image. The bias-subtracted images are then corrected for CCD non-linearity

according to equation 15 and are then dark-subtracted using the master dark. Next, a plane

is fit to, and then subtracted from, the dark-subtracted twilight flat to remove any residual

gradient in the twilight sky. The resulting images are normalized such that the pixels in

each image have a mean value of 1.0. Finally, the master flat image is formed by median

combining (see §2.2.5) the normalized twilight flat images. The median operation

essentially ignores all outlier pixel values in the normalized raw images. The ignored

outliers include the pixels from each raw image that have counts above the median sky

background due to bright stars. The DP module of AIJ automates the process of building a

master flat-field image.

2.2.5 Median Combining

Master calibration images are often created by median combining several

individual images to reduce the effects of outlier pixel values. The value of each pixel

(x,y) in the median combined image is taken as the center value resulting from a numerical

sort of the values of pixel (x,y) from all of the individual images. If there are an even

number of individual images, the median combined pixel value is taken as the average of

the two values nearest the center after sorting. Median combining effectively ignores the

contributions of outlier pixel values in the individual images caused by temporal hot

pixels, cosmic ray hits, stars in the case of individual flat-field images that are shifted on

the sky from exposure-to-exposure, etc. Average combining is sometimes preferred over

median combining when creating master bias and master dark images, however, care must

be taken to ensure that all persistent charge has dissipated from the detector before starting

the raw bias and raw dark exposures. Median combining is more forgiving of charge that

persists from the last exposure taken prior to starting bias or dark exposures.
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2.2.6 Science Image Calibration

After the linearity correction coefficients have been determined, and the master

bias, master dark, and master flat images have been created, AIJ’s DP module will

automatically apply the corrections to a time-series of science images. The science images

are calibrated by subtracting the master bias image, correcting for CCD non-linearity

according to equation 15, subtracting the master dark image, and dividing by the

normalized flat-field image.

Even with a high-quality master flat, my fully calibrated science images retain a

flat-fielding error of up to 5% for areas on the detector that are obscured by dust specs on

the glass window of the CCD. I believe the dust spec residuals are significant because the

sides of the telescope are open between the primary and secondary mirrors, which allows

significant off-axis scattered light to reach the CCD during twilight. Since significant light

is arriving at the dust spec on the CCD window from all angles, rather than perpendicular

to the focal plane, the loss of light at the detector due to a dust spec measured during

twilight is less than the loss of light from a night-sky point source for which the

proportion of scattered light is much less.

2.3 Telescope Guiding

In the best case, flat-field calibration leaves residuals of & 0.5% RMS in an

individual corrected image (Mackay, 1986). In this work, I am attempting measurement

precisions of ∼ 0.1%, or even less in some cases, but my calibrated images have flat-field

errors of up to 5% for the pixels under dust specs. Because the measurements in this work

are differential (see §2.7), the flat-fielding residuals can be mitigated if each star involved

in a differential measurement can be kept fixed at the same position on the detector for all

images of the time-series. However, telescopes never track a position on the sky perfectly,

so position errors must be fed back to control the telescope pointing. This technique is

called guiding.
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For telescope mounts with poor tracking or periodic tracking errors, pointing errors

must be fed back to the telescope control system more often than the rate at which science

image exposures are taken. This can be achieved by using a second off-axis detector to

measure the telescope pointing at a high rate. Depending on the rate at which corrections

are required, the star used to measure the telescope’s pointing may need to be significantly

brighter than the target star. These off axis detectors are normally small to keep cost down,

so the placement of a bright star on a small guide camera detector significantly limits the

placement of the target and surrounding field on the science detector. This also often

requires that the science detector be rotated to cumbersome odd angles, rather than, for

example, a convenient north-up, east-left orientation. Another issue is that imperfect polar

alignment of the telescope will result in the field on the science detector slowly rotating

about the center of the star on the guide detector. This field rotation limits the power of

guiding to mitigate the effects of flat-field residual errors.

The MORC telescope (see §3.1) used to observe all data presented in this work has

excellent free-running tracking and no perceptible periodic pointing error. It can maintain

the position of a field on the detector to within a few arc-seconds (∼ 1′′ − 3′′ depending the

altitude of the target) for up to 5 minutes. The exposure times used in this work are all less

than 5 minutes, so we guide from the science images by measuring the difference in the

position of the centroid of the target star from an initial reference position, and feedback

pointing corrections to the telescope mount between each exposure. This method of

guiding minimizes field rotation due to polar misalignment, and maintains the same

orientation of the field in all images from the telescope.

Another advantage of the MORC guiding system is that if clouds or equipment

failure cause a break in the observing sequence, the target star can be placed exactly back

on the same pixels on the detector. While placing a target back on a precise position on the

science detector may be possible when a separate guide camera is used, it is difficult to do

in many cases. The implementation of the MORC guiding system is discussed in §3.5.4.
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2.4 Defocusing

The exploitation of the telescope defocusing technique has helped me achieve

exceptional photometric precision. The effects of residual inter-pixel sensitivity variations

after imperfect flat-fielding can be minimized by spreading the light to be measured over

many pixels and combining the ADU from all of the pixels. The atmosphere naturally

causes light from a point source to be broadened, but often it is advantageous to defocus

the telescope slightly to spread the light over more pixels. When a large number of ADUs

are summed, the precision of the total ADU value will benefit from the averaging of the

sensitivities of all pixels involved. This technique is a third line of defense against

imperfect flat-fielding and imperfect telescope guiding.

Another positive side effect of defocusing is that the dynamic range of source flux

that can be incident on the detector without causing saturation is greatly increased. This is

very beneficial for the differential measurements used in this research (see §2.7), since it

likely provides more non-saturated sources on the detector that can be used to find the

differential brightness of the target source. However, defocusing in crowded fields can

cause problems and may need to be minimized if a source of interest begins to overlap (or

blend) with a nearby source as the sizes of the sources on the detector increase with

increasing amounts of defocus.

2.5 Aperture Photometry

Photometry is a technique used to measure the amount of flux detected within a

fixed set of pixels on a CCD. The fixed set of pixels is defined as the aperture. The sum of

the calibrated science image ADUs from all pixels that fall within the aperture gives the

total flux in the aperture, which is sometimes referred to as the integrated counts. If the

aperture encloses all of the flux from a source (such as a star), we can measure the total

integrated counts from the source. A radius of 3×FWHM (full-width half-maximum)

includes ∼ 98% of the flux from a Gaussian point spread function (PSF). In addition to the
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source’s contribution, the integrated counts will contain counts contributed by the

brightness of the night sky called sky background. The ADUs/pixel contributed by the

local sky background at the source need to be estimated so that the ADUs contributed

exclusively by the source can be determined.

All apertures used in this research are circular, so the sky background can be

estimated from the pixels in an annulus that is centered at the center of the aperture. The

inner edge of the annulus should be far enough away from the wings of the source’s PSF

so that the pixel ADUs are correct representations of the sky background only. The outer

edge of the annulus should be close enough to the source so that the background is still

representative of the local background in the aperture. Furthermore, the sky background

has shot noise, so the region needs to be large enough to minimize the overall contribution

to the total error of the measurement (see §2.11). Ideally, the sky background annulus

should enclose as many, or even more, pixels than are enclosed by the aperture to

minimize the noise contribution.

Crowded fields complicate the estimation of the local sky background since stars

near the target of interest often fall within the background annulus. The photometer in AIJ

removes the contributions of flux from stars in the background annulus by iteratively

removing pixels from the background set that have ADU values differing from the mean

by more than 2σ. The iteration continues until the mean ADU of the pixels remaining in

the background set converges or the maximum number of allowed iterations has been

reached without convergence.

The resulting mean ADU from the background region is adopted as the local sky

background and is subtracted from each pixel in the aperture. AIJ also offers the option to

fit a plane to the final set of pixels remaining in the background region. Then the value of

the plane at each pixel in the aperture is subtracted from the pixel’s ADU. The sum of the

background subtracted ADU values within the aperture is then the net integrated counts

from the source. If the source’s net integrated counts from a time-series of calibrated

images is plotted against time, a light curve representing the source’s relative brightness
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over time is created. There is still at least one major source of contamination in the light

curve of the star. The molecules in the Earth’s atmosphere absorb and scatter some of the

photons from an astronomical source, resulting in time-varying changes in the PSF size

and apparent brightness of the source, even though the source brightness is constant.

2.6 Variable Radius Aperture Photometry

Variable radius aperture photometry is an extension of the fixed radius aperture

photometry discussed in section 2.5. Rather than keeping a fixed size aperture for all

exposures in the time series, the radius of all apertures in a particular exposure is set to a

user specified constant factor times the average FWHM of the stellar PSFs in the image.

AIJ determines the average FWHM in each image from all the sources measured with an

aperture. As the FWHM changes throughout the time-series, the aperture size for each

image is proportionally adjusted.

The advantage of the variable radius aperture is that the same fraction of the total

stellar flux can be captured as the PSF size varies throughout the night, improving

signal-to-noise and reducing systematics in many cases. Variable apertures should not be

used for cases where one or more target and/or comparison stars have a nearby neighbor

that will start to blend into the aperture of the star of interest in exposures with poor

seeing. The variable aperture will produce more scatter in the light curve in this case

because not only will the neighbor’s flux be spread toward the variable aperture of

interest, the variable aperture will grow at the same time and will include a larger fraction

of the neighbor’s flux than a fixed aperture.

Howell (1989) showed that the theoretical aperture radius which produces the

highest photometric precision is ∼ 1×FWHM, but that the optimal radius varies

depending on star brightness, sky background, and the other parameters included in the

calculation of photometric error (see equation 21). Through trial and error, I have found

that a good nominal setting for the FWHM scaling factor in AIJ is ∼ 1.2 for MORC

images. The FWHM scaling factors I have used range from ∼ 0.9 to ∼ 1.3, and the
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optimal setting depends on the level of telescope defocus, the brightness of the target and

comparison stars, the amount of sky-background, and the proximity of neighboring stars

near an aperture.

2.7 Differential Photometry

If only the fractional change in the brightness of a source is needed throughout a

time-series of observations (i.e. the absolute brightness of a source is not required), then

the net integrated counts from the target of interest can be compared with the net

integrated counts from other sources that are expected to have constant brightness and that

fall on the detector in all exposures of the time-series. The measurement of the brightness

of a target that is based on the brightness of one or more other objects (or the comparison

ensemble) is called differential photometry. In this work, my sources are always stars, so I

will use that designation in the remainder of this work. Differential photometry is

performed in AIJ using the Multi-Aperture (MA) module described in §4.1.4.

The differential photometric measurement is made by performing aperture

photometry on the target star plus any number of comparison stars, and then dividing the

target star’s net integrated counts, FT , by the sum of the net integrated counts of all the

stars in the comparison ensemble (i.e. the sum of FCi , where i ranges from 1 to the number

of comparison stars n). Then the differential flux is calculated as:

fT =
FT∑n
i=1 FCi

. (16)

We are left with a signal that is unitless and is often referred to as relative flux. In

AIJ, the result of equation 16 is labeled as rel_flux_T1. Although the terms relative

photometry and differential photometry are sometimes differentiated by other authors,

they are used in this work and in AIJ interchangeably.

One point mentioned above is that the comparison stars are assumed to be constant

in equation 16. This is often not the case, so one must investigate each comparison star to

ensure that it behaves as a constant source. To verify that a comparison star is indeed
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non-varying, it can be compared to a different set of comparison stars, or to the other

comparison stars in the ensemble. The latter method can be investigated most easily in

AIJ and ensures that all good comparison stars in an image can be used as part of the

comparison ensemble. AIJ calculates a differential flux for each star in the comparison

ensemble by comparing it to all other stars in the ensemble. The calculation is:

rel_flux_Cj =
FCj∑n

i=1 FCi , i ̸= j
, (17)

where j identifies the comparison star being measured.

Since all of the target and comparison star fluxes in an image suffer (nearly) the

same degradations when passing through the Earth’s atmosphere, the division operation in

the differential photometry calculation removes much of the atmospheric contamination

from the target star differential flux, resulting in greatly improved photometric precision.

However, there are some common residuals that remain in the differential data that limit

measurement precision (see §2.8).

The goal of transit photometry is to measure the change in brightness of the target

star over time due to the planet passing in front of it. Using transit modeling (see §1.5.1),

several physical parameters can be determined from the fractional change in the flux of the

target star over time. Fortunately, those fractional flux changes can be measured directly

with differential photometry, so transit photometry and light curve modeling can benefit

from the precision improvements afforded by differential photometry.

2.8 Comparison Star Selection

Although differential photometry provides large gains in the photometric precision

of ground-based observations, there are still residual systematics in the differential data.

The systematics can sometimes be minimized through comparison star choices, as long as

comparison stars with the desired characteristics are available in the image.

In my experience, the most critical comparison star characteristic to consider is

brightness. Because of CCD non-linearity (even after near-perfect correction), comparing
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a target star to a significantly brighter or dimmer star will leave systematics in the data as

sky transparency changes throughout the observations. Consider the extreme example of a

target star with flux that falls within a single pixel and produces a nominal ADU of 5,000

counts, and a one pixel comparison star that produces a nominal ADU of 50,000 counts.

The resulting target star differential flux is fT = 0.1. Using the nonlinearity characteristics

of the U16M CCD shown in equation 15 as an example, a perfectly linear detector would

have an ADU of 5,020 for the target star and 52,000 ADU for the comparison star. Now

consider a 20% drop in sky throughput. The linear detector would show 4,016 ADU for

the target and 41,600 ADU for the comparison. Using the inverse of equation 15, the

nonlinear device would now show 4,003 ADU for the target and 40,300 ADU for the

comparison star, resulting in a target star differential flux of 0.09933. While the target star

brightness remained the same, the change in sky throughput caused a change in the

measured differential flux of 0.67% or about 7 mmag. High precision modeling of hot

Jupiter transits requires ∼ 1 mmag photometric precision. Hot Jupiter transits of sun-like

stars cause a ∼ 10 mmag deep transit. Clearly, the 7 mmag systematic (albeit with no

linearity correction) due to a change in sky throughput is not acceptable. In practice, I

have found that comparison stars with brightness in the range of 50 − 150% of the target

star brightness give good results.

Hot Jupiter transits require 2 − 6 hours of continuous observations to record the full

transit. During that time, the target will move through significant changes in altitude as

measured from the horizon. Light from a star passes through the minimum possible

amount of atmosphere on its way to the surface of the Earth when it is at an altitude of 90◦

(i.e. is at the zenith, or is directly overhead). This amount of atmosphere is called one

airmass. As the position of the star moves toward the horizon in any direction, the angled

path of its light through the atmosphere causes the light to encounter more atmosphere

than if it were overhead. At an altitude of 30◦, the path of the light through the atmosphere

has doubled in length. The light now encounters two airmasses of light on the way to the

Earth’s surface. At two airmasses, the atmospheric attenuation (or extinction) of the stellar
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flux will be double the amount at one airmass. This can contribute to the detector

non-linearity systematic discussed above. It also introduces another systematic based on

the wavelength of light. In very narrow optical bands, atmospheric extinction can be very

high (e.g. see Chapter 7). In wide optical bands, atmospheric extinction per airmass is

relatively low (∼ 0.3 mag), but the precise amount is dependent on the wavelength content

of the target star’s flux. Blue wavelengths preferably scatter off of molecules and dust in

the atmosphere, and thus suffer a greater extinction than red wavelengths. The

phenomenon is referred to as differential extinction. The result is that hotter/bluer stars

will be more attenuated by the atmosphere than cooler/redder stars.

Because of the dramatic changes in airmass during a transit, differential extinction

can cause a large systematic, sometimes called color trend or airmass trend, in a light

curve that is proportional to the airmass at each exposure. To minimize this systematic,

comparison stars should be chosen that have the same color as the target star. This is

usually a requirement that is hard to meet. However, since the trend is so strongly

correlated with airmass, if good baseline data are available, the systematic can be

compensated for at the expense of one more fitted parameter in the transit model fit (see

§2.9).

Atmospheric characteristics vary at differing spacial locations on the sky. Although

the typical angular coverage of a telescope is small, differential atmospheric effects can

become noticeable across the field of view of a typical telescope, especially under

non-ideal observing conditions. To minimize the effects of these atmospheric gradients,

comparison stars should be selected as a near as possible to the target star. Also, stars far

from the target will possibly experience a significantly different airmass than the target,

especially in very wide fields of view and/or at very low altitudes. If the field is rich with

good comparison star candidates, selecting a comparison ensemble that encircles the

target can help average out these residual systematics.

Fields rarely have comparison stars available that are the same brightness, same

color, and are near the target star, but there are methods available that I discuss in the next
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section, which can help reduce the effects introduced by using non-ideal comparison stars.

Also, AIJ allows the user to interactively redefine which comparison stars belong to the

comparison ensemble without having to perform differential photometry on the

time-series of images again. This allows the user to quickly determine which comparison

stars are adversely affecting the quality of the target star light curve, and makes it easy to

exclude them from the ensemble.

2.9 Detrending Time Series Photometry

If data are available that may be correlated with systematics in differential

photometry, additional parameters can be included in the light curve model to remove or

minimize the impact of systematics on the light curve. Both AIJ and EXOFAST (see §4.2)

provide the capability to simultaneously detrend (using one or more trend datasets) and fit

a transit model to the light curve, at the expense of adding an extra fitted parameter for

each trend dataset. If good pre-ingress and post-egress baseline data are available, a few

detrend parameters can be included in a light curve fit without causing problems with the

correctness of the model fit. Ideally, the same amount of time should be spent observing

baseline data as spent observing the transit. If baseline data are of short duration or only

exist on one end of the transit, detrending can adversely impact the correctness of the

transit model fit. If multiple transits of the same system are available to fit simultaneously

(i.e. globally) using multi-EXOFAST (see §4.3), the number of detrending parameters can

be increased because the total number of transit model parameters are decreased, as

compared to fitting each transit individually, because a common set of physical transit

parameters are fit to all light curves. I take advantage of these global fitting and detrending

benefits for all of the results reported herein.

Although some telescope and camera control software adds various system data to

the header of each image, our control system adds only basic info, of which the most

useful for detrending is time. However, AIJ has an astronomical calculator module called

Coordinate Converter (CC; see §4.1.8) that can use the time from the image header, along
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with user entered target and observatory coordinates to calculate various values such as

airmass, altitude, hour-angle, etc., that are often useful for detrending. The Multi-Aperture

module of AIJ calculates even more datasets that are useful for detrending.

Detrending is accomplished by including a χ2 penalty for the detrend parameters

in the overall light curve fit. The detrend χ2 value at each step in the fitting process

represents the goodness of the linear fit of the detrend parameters to the light curve after

subtracting the light curve model corresponding to the current fit step. The χ2 contribution

for all n detrend parameters is calculated at each step of the fitting process as

χ2
D =

m∑
k=1

(
Ok −

(∑n
j=1 c jD jk

)
− Ek

)2

σ2
k

, (18)

where j indexes the detrend parameters, k indexes the samples of the light curve, m is the

total number of samples in the light curve, Ok is the observed normalized differential

target flux, c j is the fitted linear coefficient for the detrend parameter values D jk , Ek is the

expected value of the flux (which is the normalized transit model value corresponding to

the time of the kth data sample), and σk is the error in the normalized differential target

flux for each sample.

The detrend parameters I have determined to be most useful for reducing

systematics in the MORC data are airmass, time, sky background, FWHM of the average

PSF in each image, total comparison star counts, and target x-centroid and y-centroid

positions on the detector. Time is recorded in the image header by the camera control

software (XmCCD; see §3.5.2), airmass is calculated by AIJ’s DP module, and the rest are

calculated by AIJ’s MA module. I used these seven detrend parameters for the data

presented in Chapters 5, 6, and 7.

2.10 Real-time Monitoring of Observations

In the early phases of conducting observations for this research, I wasted a number

of nights because I set up the observations incorrectly, or at least not optimally, and I was

not aware of the problem until data reduction was completed, usually the next day. For
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example, an incorrect exposure time setting might result in a saturated target and/or

critical comparison star. I searched for a pseudo-real-time data reduction package that

could be used to follow the progress of observations as the exposures come in from the

telescope, but didn’t find anything readily available. Over time, I developed the AIJ

package to provide the real-time data reduction capability (part of the DP module), and to

provide multi-platform image viewing, differential photometry, plotting, light curve

modeling, etc. (see §4.1).

AIJ solved the incorrect setup problems, because I could see within a few seconds

of a new image being written from the camera if there was a problem in the automatically

updated light curve plot. However, another advantage gained from real-time data

reduction is probably just as important. Since the light curve plot updates as new images

come in from the telescope, I can tweak exposure time, telescope focus, aperture size,

filter selection, and the comparison star ensemble to ensure high-precision photometric

results are being achieved. Obviously, this optimization requires starting prior to the event

of interest to give time to tweak the parameters, but after some experience, an observer

gains insight into the trade-offs of the different observing parameter settings, and the time

needed to tune the observations drops dramatically.

2.11 Error Calculations

In this work, the error in a measurement is defined to be the standard deviation of

the measurement’s probability distribution. Proper estimation of the error in each

photometric measurement is important for reporting the significance of the measurement

and plotting error bars on the light curve plot, but it is also important for the proper

calculation of the best fit model to the data, since the standard deviation of each

measurement, σ, is part of the χ2 calculation used in the fitting process (e.g. see equation

18). In short, the χ2 contribution from each data point is weighted by a factor of 1/σ2,

which places more weight on data with small errors, and less weight on data with large

errors.
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Discrete energy packets called photons are emitted from a source randomly and

independently from all other photons, resulting in a Poisson distributed random number of

photons arriving at a detector per unit time. This time varying arrival of photons causes

variations in the number of photons detected per unit time called shot noise. Since the

variation is Poisson distributed, a signal with mean flux F will have a standard deviation,

or shot noise of
√

F (e.g. Fried 1965). Shot noise is the fundamental limitation to

measuring the flux from a star at high precision. As an example, if our instrumentation

detects the arrival of 106 photons, the noise in the measurement is then
√

106 = 1000

photons. This leads to a noise-to-signal ratio of 0.1% or equivalently a measurement

precision of ∼ 1 mmag. Clearly, we need to ensure the detection of ≥ 106 photons in each

measurement of a constant brightness star to limit the RMS of the scatter in a light curve

to ≤ 1 mmag.

Mortara & Fowler (1981) and Howell (1989) discuss the noise contributions to the

measurement of a point source using CCD aperture photometry and develop the "CCD

equation" to estimate the signal-to-noise ratio of a measurement. Merline & Howell

(1995) construct a computer model of the same measurement and develop the more

rigorous "revised CCD equation". The equation gives the total noise for a CCD aperture

photometry measurement as:

N =

√
GF∗ + npix(1 + npix

nb
)(GFS + FD + F2

R + G2σ2
f )

G
, (19)

where G is the gain of the CCD in electrons/ADU, F∗ is the net (background subtracted)

integrated counts in the aperture in ADU, npix is the number of pixels in the aperture, nb is

the number of pixels in the region used to estimate sky background, FS is the number of

sky background counts per pixel in ADU, FD is the total dark counts per pixel in electrons,

FR is read noise in electrons/pixel/read, and σ f is the standard deviation of the fractional

count lost to digitization in a single pixel (σ f ≃ 0.289 ADU for f uniformly distributed

between −0.5 and 0.5).

If the net integrated counts from the source, F∗, dominates the other terms, and the

57



gain G = 1, the total noise approaches the Poisson noise limit of
√

F∗. The noise increases

as the number of pixels in the aperture increases (due to all of the secondary terms in the

equation), but recall that for a non-ideal CCD, noise introduced by inter-pixel variations

decreases with increasing aperture size (except in the case of perfectly guided telescope),

so the aperture size needs to be selected after considering both factors. The number of

background region pixels should be chosen to be as large as possible, but not so large that

the pixels far from the aperture are no longer representative of the local background at the

aperture. If a source is faint relative to the local sky background, the Poisson noise of the

sky background may dominate the overall measurement noise.

The photometer in AIJ performs the noise calculation described by equation 19 for

each aperture automatically, as long as the user has entered the dark current and read noise

for the CCD device used to collect the data. For differential photometry, AIJ propagates

the noise from all apertures to derive the error in differential flux measurements. First, the

noise from the apertures of each comparison star are combined in quadrature to give the

total comparison ensemble noise:

NE =

√√√√ n∑
i=1

N2
Ci
, (20)

where i indexes the comparison stars of the ensemble, and NCi is the noise for each

comparison star as calculated by equation 19, and n is the number of comparison stars.

Error is then propagated through the relative flux quotient to find the relative flux error for

the target star as:

σrel_flux =
FT

FE

√
N2

T

F2
T

+
N2

E

F2
E
, (21)

where FT is the net integrated counts in the target aperture, FE is the sum of the net

integrated counts in the ensemble of comparison star apertures, NT is the noise in the

target star aperture from equation 19, and NE is the ensemble noise from equation 20. AIJ

labels the relative flux error columns as rel_flux_err_Txx, and rel_flux_err_Cxx for target

and comparison stars, respectively, where xx is the aperture number corresponding to a

particular aperture.
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Atmospheric scintillation adds another noise source to the photometric noise

described by equation 19 that can dominate for short exposures and/or telescopes with

small apertures. Reiger (1963) described the theoretical approach to estimating the

amount of scintillation noise, Young (1967) conducted observations to confirm the theory

and formalized the equation, and Gilliland et al. (1993) clarified a factor in the equation.

The resulting scintillation noise equation is

σscintillation = 0.09D− 2
3χ1.75(2tint)− 1

2 e− h
8000 , (22)

where D is the telescope diameter in centimeters, χ is the airmass, tint is the exposure time

in seconds, and h is the altitude of the observatory in meters.

The MORC telescope has an aperture diameter of D = 60 cm and is located at an

altitude of h = 229 m. For an airmass of χ = 1.15 and an exposure time tint = 100 s, the

estimated atmospheric scintillation contribution that would be added in quadrature to the

single aperture noise of equation 19 is σscintillation = 0.0005, or about 0.55 mmag. It is

unclear how much of that noise is canceled when performing differential photometry.

With favorable weather conditions, I have observed bright stars in 100 s exposures with

the MORC telescope and achieved 0.6 mmag of RMS scatter in the light curve.

Apparently, differential photometry is capable of canceling a significant portion of the

scintillation noise.

Additional sources of photometric noise include the variable leakage of flux from

neighboring stars into the aperture as seeing changes slightly from exposure to exposure,

Poisson noise in the master dark and master flat images, slight variations in CCD bias in

the time-series, cosmic ray impacts on the detector, varying contributions of square pixels

to a circular aperture, camera shutter open/close variations, inaccurate determination of

sky-background from exposure-to-exposure, etc.

AIJ estimates the error in each measurement based only on the factors included in

equation 19. Scintillation and the other noise sources are not included. However,

multi-EXOFAST scales light curve data errors such that the best fitting model has

χ2
red = 1.0 to ensure the resulting system parameter uncertainties are roughly accurate.
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CHAPTER 3

INSTRUMENTATION

3.1 Moore Observatory Ritchie-Chretien 0.6 m Telescope

All data presented in this work have been observed using the 0.6 m Moore

Observatory Ritchie-Chretien (MORC) telescope shown in Figure 12. The MORC

telescope was manufactured by RC Optical Systems and was installed in August 2006.

The instrument features a very robust fork mounting with an absolute Renishaw precision

encoder on the polar axis that provides highly accurate free-running tracking of the sky.

Unguided exposures of up to ∼ 5 minutes result in a tracking error of less than 1′′ − 3′′,

depending on the altitude of the object.

The telescope’s Zerodur optics were made by Star Instruments. The f/8 system has

a diffraction limit of 0.′′2 at 500 nm, peak-to-valley wavefront variation of 0.242 wave, and

0.039 RMS, with a Strehl Ratio of 0.941. The mirrors have Spectrum Coatings enhanced

aluminum coating with a reflectivity peaking at 96.9% at 528 nm, decreasing slightly to

95.7% at 450 and 650 nm. The efficient well-corrected optics are useful from the

atmospheric UV cutoff below 380 nm through the near infrared above 2 µm.

The instrument is focused by a precision adjustment of the secondary mirror to

bring the focal plane into coincidence with a fixed focal position 255 mm from the back of

the primary mirror cell. Spacers are used to put the camera or other instruments at the

proper position, and an encoded focus motor moves the focal plane 5 µm per encoder

count. The image scale in the focal plane is 42.′′3 per mm, so that 1′′ corresponds to

approximately 24 µm. At f/8, the telescope can focus precisely to within its diffraction

limit since the least count on the focus encoder translates to a image size for a point source
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Figure 12. Moore Observatory Ritchie-Chretien (MORC) 0.6 m telescope. All observations
presented in this work were collected with the MORC telescope.
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of 0.′′026. In long exposure imaging with averaging seeing of 1′′, focusing precision of 40

encoder counts is typical. A focal plane corrector and instrument rotator are available but

are not used for photometry.

3.2 CCD camera

An Apogee U16M CCD camera is used with the MORC telescope for exoplanet

transit photometry. The camera has a Kodak KAF-16803 CCD detector with a

4096×4096 array of 9×9 µm microlensed pixels which oversample the seeing and

permit very accurate photometry and imaging over a wide dynamic range. The pixel scale

is 0.′′39 per pixel, which provides a field of view of 26.′2×26.′2. The wide field of view

helps to improve differential photometry by offering a wider selection of comparison stars

(see §2.8). The oversampled seeing improves photometry by sampling the light from a

point source with more pixels (similar to telescope defocusing), improving the dynamic

range of possible brightness measurements within an image, and reducing noise resulting

from inter-pixel variations combined with imperfect guiding.

The camera has a read noise of 9 electrons, a dark current of 3 electrons/pixel/sec

at 25◦ C, and a dark current doubling temperature of 6.3◦. Most of the data collected for

this research was observed after cooling the detector to −20◦ C, resulting in a dark current

of ∼ 0.02 electrons/pixel/sec. Figure 13 shows the detector’s quantum efficiency versus

wavelength (thin brown line). Peak quantum efficiency is 60% at 550 nm. A gain setting

of 1.5 has been used for this research. Saturation occurs at 100 K electrons, corresponding

to an ADU just above the 0-65535 range of the 16-bit analog to digital converter.

Linearity deviation is specified as 2%, but see §2.2.2 for measurements performed at

Moore Observatory to characterize the linearity of the device.
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3.3 Filters

The telescope is equipped with an Optec IFW3 filter wheel which supports

interchangeable wheels. Each wheel is configured to hold up to six 50×50 mm square

filters. Two filter wheels are routinely used with the MORC telescope. One wheel

contains a set of broadband filters, and the other contains a set of narrowband filters.

The broadband filter wheel contains the Astrodon Sloan filters g′, r′, i′, z′, and a

clear with blue block (CBB) filter. The bandpass of each filter is shown in Figure 13.

When performing follow-up photometry for transit surveys to qualify and characterize

candidate transiting planets, the comparison of transit depth in multiple broadband filters

is important to ensure the achromaticity of a transit in optical bands. Exoplanets are dark

relative to the brightness of the host star in the optical, so transit depths should be the

same in all optical bands. Apparent transits that show different depths in different

broadband filters are likely false positives caused by a blend of two or more unresolved

stellar objects in the aperture (see §1.4.3). The g′ and i′ filters are often used to measure

achromaticity since the bandpasses are separated somewhat in wavelength and the total

system throughput is similar in those filters for sun-like stars. The quantum efficiency of

the detector is low in the z′ band, so the z′ filter is good for observing bright stars that

would saturate quickly in the other filters (V . 9 for MORC). The downside is that the

detector suffers from inter-exposure image persistence in the infrared, so light curve

systematics tend to be worse in the z′ filter. The r′ filter is usually the best choice for

intermediate brightness stars (9 .V . 12 for MORC) when high photometric precision is

the key observational goal, because that band tends to result in the least systematics in the

light curve and on average tends to have the most signal of all of the Sloan filters for

sun-like stars. The CBB filter is optimal for faint star photometry (V & 12 for MORC)

since it has the widest bandpass, but at the expense of no chromaticity information. The

blue end of the spectrum is blocked to minimize airmass trend in the light curve.

The narrowband filter wheel contains a custom Na D interference filter with a

FWHM of 1 nm (in addition to other narrowband filters not used in this research) and an
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Figure 13. U16M/KAF-16803 quantum efficiency and Astrodon broadband filter through-
put versus wavelength. U16M/KAF-16803 quantum efficiency with no cover glass versus
wavelength is shown by the thin brown line. The peak quantum efficiency is about 60%
at 550 nm. Throughput versus wavelength is shown for each of the Astrodon Sloan filters,
g′ (blue line), r′ (red line), i′ (purple line), and z′ (black line), and the Astrodon clear with
blue block (CBB; teal line) filter.
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Astrodon red continuum (RC) filter with a 5 nm FWHM. The Na D and RC filters are used

to search for sodium in the atmospheres of exoplanets and are described in detail in §7.3.3.

The filter wheel position can be controlled by the camera user interface (see §3.5)

or by an observer written script. As part of this work, I wrote several Linux bash scripts to

control the camera, telescope guiding, and filter wheel operation (see §3.5). The scripts

provide the capability to automatically alternate between two filters from exposure to

exposure, so that a time series of observations of an event can be obtained

pseudo-simultaneously in two filters. The filter change happens during CCD readout to

maximize total exposure time on the sky. This observing mode is important to test for the

achromaticity of candidate transiting exoplanets, and for the narrowband observations

presented in Chapter 7.

3.4 Dome Enclosure

The MORC telescope and instrumentation are housed in an Ash-Dome brand dome

which sits atop a tetradecagon-shaped (14-sided) concrete block building with a

rectangular control room on one side. Figure 14 shows an outside view of the dome with

the upper and lower shutters raised and the MORC telescope inside. Figure 15 shows an

inside view with only the upper shutter raised, which gives access to target altitudes

ranging from 38◦ to 90◦ above the horizon. Raising both shutters gives access to altitudes

ranging from the treeline up to 54◦. The lower portions of the dome have been insulated to

reduce daytime heating by radiation from the warm metal dome. A large cooling fan in

the doorway mixes cool air during the daytime and promotes rapid equilibration at night.

The outside of the concrete block is painted with a highly reflective insulating white paint

to minimize heat gain during the day.

Although steps have been taken to minimize heat buildup in the dome, the

combination of the metal roof and block walls results in excess heat retention inside the

dome, which causes reduced seeing through the dome shutter. Although this deteriorates

image quality slightly, there is little effect on photometry (except for targets in crowded
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Figure 14. Outside view of MORC telescope enclosure. The enclosure is a dodecagon-
shaped concrete block building with a rectangular control room on one side. An Ash-Dome
brand dome sits on top of the block walls. The upper and lower shutters are raised and the
MORC telescope is visible inside.

fields where the flux from a nearby star may blend into the aperture) because the telescope

is almost always defocused beyond the seeing-limited PSF size (see §2.4). An important

gain from the heat retention in the building is that dewing on surfaces in the optical path

has never been a problem in the five years I have been conducting research. This is

critically important for transit observing, since the events often require continuous

observations for an entire night.

The upper shutter and dome rotation are computer controlled locally or remotely

through a bank of power relays (see §3.5). Low light cameras are installed inside the

dome to enable monitoring of the telescope and dome operation during observations, and

to facilitate remote operation via the Internet.
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Figure 15. Inside view of MORC telescope enclosure. The inside view shows the upper
shutter raised giving access to target altitudes ranging from 38◦ to 90◦ above the horizon.

3.5 Observatory Control Software

The MORC control system runs on a Linux based computer that is located inside

the dome to minimize electrical interference in the telescope encoder lines. The computer

controls power inside the dome, dome rotation, dome shutter position, telescope mount

pointing, telescope focus, CCD camera operation, filter wheel operation, and provides

access for authorized users to control the telescope and instrumentation from any network

connected location.

3.5.1 XmTel Telescope Mount Control

XmTel provides a Linux-based graphical user interface for control of various

brands of telescope mounts and is developed and supported by John Kielkopf at the

University of Louisville. Figure 16 shows the intuitive user interface that allows manual

control over telescope pointing, automatic pointing to coordinates loaded from a target
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queue file or entered by hand, and several tracking and guiding modes. It also links to the

Xephem Sky View program (Downey, 2011) which shows a simulated sky view and the

position of the telescope, and it provides point-and-click control for telescope pointing.

XmTel is also designed to allow direct control of the telescope mount from scripts for

automated observations and telescope guiding.

3.5.2 XmCCD Camera Control

XmCCD provides a Linux-based graphical user interface for control of

astronomical CCD cameras and filter wheels and is developed and supported by John

Kielkopf at the University of Louisville. The user interface is shown in Figure 17.

XmCCD allows the set up of single or multiple exposures, including file naming pattern,

exposure time, maximum number of exposures, subarea selection, filter selection, and

various values for Flexible Image Transport System (FITS; Wells, Greisen, & Harten

1981; Pence et al. 2010) header storage. XmCCD stores files in FITS image format and

links with DS9 (Smithsonian Astrophysical Observatory, 2000) for interactive display of

images written from the telescope. Settings are available to capture bias, dark, and

flat-field images. The program also provides for scripted control of the camera and filter

wheel and links with a script for telescope guiding.

3.5.3 PyDome and PyFocus Dome and Focus Control

PyDome provides for local or remote operation of a telescope dome and is

developed and supported by John Kielkopf at the University of Louisville. PyDome

includes code to calculate the requisite dome azimuth given the celestial coordinates of the

telescope for automatic control of dome rotation. RFID tags are distributed at ∼ 4◦

spacing around the inside of the dome to provide absolute encoding of the dome azimuth

as developed by Kielkopf et al. (2014). An RFID tag reader informs PyDome of the

current dome azimuth. PyDome also allows manual or scripted control over the dome

rotation and the upper shutter position, and although connections to the lower shutter are
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Figure 16. The XmTel telescope mount control user interface. The top-left panel shows the
XmTel control interface. The top-right and bottom-middle panels show the Xephem Sky
View program interfaces. See text for details.
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Figure 17. The XmCCD camera control user interface. XmCCD provides control over the
camera and filter wheel and various FITS image header settings. See text for more details.

70



under construction, the software already has the capability to control it too.

PyFocus provides for local or remote operation of the MORC telescope focuser

and interfaces with temperature sensors.

3.5.4 Guiding Scripts

Guiding While Observing in One Filter

As discussed in §3.1, the MORC telescope mount has excellent free running

tracking, so we make guiding corrections between exposures based on the science images.

MORC guiding is controlled by a Linux bash script which communicates with DS9 to

determine if the target has shifted on the detector in each new image and XmTel to

feedback pointing corrections to the telescope.

To initialize guiding, a test exposure is taken of the field of interest, and using the

graphical user interface of DS9, the telescope operator places a green circular region

around the star to be used as the guide star. In most cases, I use the target star as the guide

star since that minimizes any field rotation that occurs due to imperfect polar alignment of

the mount. The guide script is then started. The script first issues a command to DS9

(through its XPA interface) to perform a centroid operation on the circular region. This

ensures that the region is centered on the star. Then the script extracts the x,y coordinates

of the center of the centroided circular region as the guiding reference point, and issues a

new command to DS9 to draw a small red circular region centered at the reference point.

The script uses the red color of the region to uniquely identify it as the reference region.

At this point, the green and red circles are centered at the same point.

The script then looks for a new image from the camera by polling for the file name

of the image displayed in DS9. Recall that XmCCD displays a new image from the

camera in DS9 (replacing the previously displayed image). When a new file name is

detected, the script issues a command to DS9 to re-centroid the green region on the guide

star in the new image, retrieves the centroided region’s center coordinates and compares

with center coordinates of the stationary red reference region. If a difference between the
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two center points is found, the telescope pointing has drifted and must be corrected.

The telescope mount normally tracks the sky at 15′′ per second to the west to

compensate for the Earth’s rotation. XmTel has a "guide" slew speed (see Figure 16),

which is slightly faster than the normal tracking speed if the telescope is commanded to

slew to the west, slightly slower if commanded to move east, and is a slow fixed rate if

commanded to move north or south (for which the tracking speed is nominally zero). If

the guide star’s center coordinates are different from the reference coordinates in the new

image, the script commands the telescope to slew at the slightly different guide rate for an

amount of time proportional to the determined x and y pixel offset. The result is that the

guide star will be placed back to the center of the reference region at the beginning of the

next exposure.

Once the guiding commands have been completed, the guide script closes a loop

and returns to polling DS9 for the arrival of a new image from the camera. The guide

script loop provides continuous automatic guiding for the duration of a time-series of

exposures. If observations have been interrupted by weather or technical problems,

guiding can resume by taking another test image and placing the green region around the

guide star. If the old reference region is still available, guiding will resume using it rather

than the centroid of the guide star. This feature is very important for long transit

observations, since a shift of the field on the detector can introduce a step function in the

photometry due to inter-pixel sensitivity variations and imperfect flat-fielding.

Guiding While Observing in Two Filters

Time-series observations in two filters pseudo-simultaneously (alternating the filter

from one exposure to the next) are handled by an enhanced guiding script. Guiding works

the same as above, except the two-filter script also controls the exposure duration, the

exposure start time, the image file names, and the filter change during CCD readout.

Images in one filter need to be easily identifiable and sortable by filename from the images

in the other filter to facilitate separate data reductions. The two-filter guiding script

72



handles the file name changes between each exposure. Also, stars may have different

brightness in each filter, so the script allows for and sets the exposure time for each new

image based on the filter setting.

A filter change takes ∼ 10 seconds. To maximize the amount of time available for

observations, it is desirable to change the filter during the ∼ 20 second CCD read out

period. To provide that capability, the script controls the exposure start time. Since the

exposure duration is also known by the script, it keeps an internal timer to ensure that the

filter change starts after the camera shutter has closed and finishes before the end of CCD

read out.

3.5.5 Time of Day

For transit timing studies, it is critical to accurately time stamp each image with its

exposure start time. Knowing the exposure start time and the exposure duration, the

mid-exposure time can be calculated by data reduction software. The Linux computer that

controls the MORC telescope and instrumentation synchronizes with several time servers

using Network Time Protocol (NTP). The control computer communicates directly with

two local tertiary stratum 2 NTP servers and takes into account the transmission delay

between the server and the computer. The tertiary servers communicate with secondary

stratum 1 NTP servers around the regional network. The timing network maintains the

control computer’s timing accuracy to within a few microseconds of UTC1 set by the

National Institute of Standards and Technology. Also, a GPS-based timing system is

installed locally at the observatory and provides a stratum 1 NTP server. This server

allows observations to continue if Internet connectivity is not available.

Timing errors of a few microseconds are negligible for the > 20 second transit

timing variations that we are able to detect from ground-based observations. However, due

to the finite speed of light, the position of the Earth in its orbit around the Sun can cause a

15 minute peak-to-peak variation in UTC1 time from the absolute time of an

extraterrestrial event. The absolute time standard adopted by the exoplanet community is
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based on a reference frame centered at the barycenter of the solar system, and is referred

to as Barycentric Julian Date in the Barycentric Dynamical Time (BJDTDB) time standard.

BJDTDB is used as the time base of all data presented in this work. Eastman et al. (2010)

describe the various timing standards (including JD, UTC1, TAI, TT, etc.), the variations

in terrestrial-based clocks from absolute time due to choice of reference frame, and the

overall rational for the BJDTDB time base for exoplanet research.

XmCCD writes the UTC1 date and time of exposure start (based on the NTP

synchronized Linux operating system time) and the exposure duration into the FITS

header of all images. AIJ reads the UTC1 date, time, and exposure duration from the FITS

header and calculates BJDTDB for each image based on the coordinates of the target. The

resulting mid-exposure time in BJDTDB format is used as the time-base for all plots and all

global system fits presented herein.

3.5.6 Remote Operation

For the first couple of years of this research, the MORC telescope and dome could

only be operated by an observer on-site at the observatory. The main limiting factor was

that dome rotation and dome shutter operation could not be computer controlled. The

dome position relative to telescope pointing had to be assessed by eye from within the

dome and the dome position had to be tweaked about every 15 minutes. Eventually, the

A/C power system for the dome and all instrumentation was upgraded to provide

computer control. Then the relay control system for the dome was upgraded to provide

computer control, and the dome was equipped with RFID tags to provide absolute dome

azimuth encoding. Finally, PyDome enabled automated computer control of the dome. At

this point, partial remote operation was possible if the 1.5 Mbps network service to the

observatory could handle the traffic, and if someone was on-site to open and close the

dome shutter by hand.

After testing various remote connectivity solutions and authorization schemes, it

was determined that observations could be conducted remotely by transporting the full set
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of graphical user interfaces to a remote computer using compression. The last 2-3 years of

observations were mostly conducted remotely. Upper shutter control was added in 2014,

enabling full remote operation for targets with altitudes higher than 38◦ above the horizon.

Lower shutter remote control is currently being added, which will allow remote

observations of any targets that would be accessible to an on-site observer.
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CHAPTER 4

ANALYSIS TOOLS

4.1 AstroImageJ

AstroImageJ (AIJ) is an astronomical image analysis software package that is

based on ImageJ (IJ; Rasband 1997-2014), but it includes customizations to the base IJ

code and a packaged set of software plugins that provide an astronomy specific image

display environment and tools for astronomy specific data reduction, analysis, modeling,

and plotting. AIJ and IJ are public domain, open source, Java programs inspired by NIH

Image for the Macintosh computer. The AIJ photometer capabilities are derived from the

basic Astronomy plugins package written by Frederic V. Hessman et al. of the Inst. f.

Astrophysik, Georg-August-Universität Göttingen1. Because AIJ is Java code, the

package is compatible with computers running Apple OS X, Microsoft Windows, and the

Linux operating system (OS).

The creation of the AIJ package was started as part of this research to enable

efficient data collection and analysis and was used to produce the times series photometric

data presented herein. Working with the KELT-N wide-field transit survey (see §1.6.1)

follow-up team, it was clear that a tool was needed to efficiently reduce and present data to

the KELT-N science team. The requirements of such a tool were essentially the same as

what I had developed for this research, so many of the other KELT follow-up observers

have adopted AIJ as a data reduction tool as well. To facilitate access to many users, a

webpage2 was developed to host the installation packages and documentation. Over time,

many other professional and amateur astronomers around the world started using AIJ, so a

1http://www.astro.physik.uni-goettingen.de/ hessman/ImageJ/Astronomy/
2http://www.astro.louisville.edu/software/astroimagej/index.html
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user forum3 was set up to facilitate more efficient support for the software. I do not track

the number of times AIJ has been downloaded from the website, but I estimate ∼ 200

active users based on the number of views of some topics on the support forum.

The intent of this chapter is to give an overview of the astronomy specific

capabilities of AIJ and to present the AIJ specific user interfaces. A detailed user guide is

available for download from the AIJ website4. Most of the AIJ user interface panels

include "tool-tip" help that optionally pops up when the mouse pointer is positioned over

an item in the display for more than a second. AIJ inherits all of the basic image

manipulation and analysis functionality from IJ. The IJ website5 provides detailed user

guides and descriptions of its functionality.

4.1.1 AIJ Toolbar

When AIJ is started, the AIJ Toolbar opens and presents the eight AIJ-specific

toolbar icons labeled as 1-8 in Figure 18. Each of those icons provides direct access to an

AIJ analysis tool. The icon shown depressed and labeled as 1
( )

indicates that AIJ is

in astronomy mode. In this mode, all images open into the astronomical image display

mode discussed in §4.1.2. Icon 2
( )

starts single aperture photometry mode. Icon 3( )
starts the Multi-Aperture photometer module discussed in §4.1.4. Icon 4

( )
clears all labels and apertures from the image display. Icon 5

( )
starts the Multi-Plot

module discussed in §4.1.5. Icon 6
( )

opens previously saved photometry

measurements tables. Icon 7
( )

opens the Data Processor module discussed in §4.1.3.

Icon 8
( )

opens the Coordinate Converter module discussed in §4.1.8.

The 12 icons to the left of the AIJ icons and all of the menu options are standard IJ

tools. These tools can also be used in AIJ, but normally only the File menu options are

used for typical time series data reductions. A single image is opened from the AIJ

Toolbar using File->Open. A time-series of images is opened into an image "stack" from

3http://astroimagej.1065399.n5.nabble.com/
4http://www.astro.louisville.edu/software/astroimagej/guide/AstroImageJ_User_Guide.pdf
5http://imagej.nih.gov/ij/
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Figure 18. The AIJ Toolbar. The icon shown depressed and labeled as 1 indicates that
AIJ is in astronomy mode. In this mode, all images open into the Astronomical Image
Display mode discussed in §4.1.2. Icon 2 starts single aperture photometry mode. Icon 3
starts the Multi-Aperture photometer module discussed in §4.1.4. Icon 4 clears all labels
and apertures from the image display. Icon 5 starts the Multi-Plot module discussed in
§4.1.5. Icon 6 opens previously saved photometry measurements tables. Icon 7 opens the
Data Processor module discussed in §4.1.3. Icon 8 opens the Coordinate Converter module
discussed in §4.1.8.

the AIJ Toolbar using File->Import->Image Sequence. Alternatively, an image or an

image sequence can be opened by dropping the file or directory, respectively, onto the

bottom area of the AIJ Toolbar, or OS options can be enabled to automatically open

images into AIJ in response to a double click on the file in an OS window. If all images in

a sequence will not fit into the computer memory allocated to AIJ, the sequence can be

opened as a "virtual stack". In this mode, the stack of images can be processed as if all

images exist in memory, but AIJ loads only the single active/displayed image into

memory. Virtual stacks perform more slowly than standard stacks, but memory

requirements are minimal. All AIJ settings are persistent across sessions. Settings for

specific configurations can be saved and reloaded later as needed.

4.1.2 Astronomical Image Display

Many popular image file formats are supported by AIJ, including the Flexible

Image Transport System (FITS; Wells, Greisen, & Harten 1981; Pence et al. 2010) file

format, which is the standard used by most astronomers. The astronomical image display

shown in Figure 19 is unique to AIJ and offers numerous display options useful to
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astronomers. An image can also be displayed in plain IJ display mode, which has no

contrast controls, analysis controls, or mouse pointer data decorating the image, by

deselecting the astronomy mode icon (1) on the AIJ toolbar.

In astronomy mode, a menu system is available at the top of the image display

window to provide access to all astronomy specific AIJ features. A row of quick access

icons for control of some frequently used image display options and image analysis tools

is located directly above the image. Pixel and World Coordinate System (WCS; Greisen &

Calabretta 2002; Calabretta & Greisen 2002; Greisen, Calabretta, Valdes, & Allen 2006)

information from the image location under the current mouse cursor is displayed in the

three rows above the quick access icons. Image and WCS format information is displayed

under the image menus. Image contrast and brightness is controlled by the interactive

histogram and direct entry fields under the image. The image overlay optionally displays

active apertures (green=target, red=comparison), object annotations, plate scale, and

image orientation on the sky.

The blue aperture shown near the center of the image moves with the mouse

pointer and the peak and integrated counts in the aperture are shown in real time as the

mouse is moved around in the image. The interactive mouse photometer helps to quickly

assess which stars are suitable comparison stars during differential photometry set up.

When AIJ is used in real-time data reduction mode (see §4.1.3), the mouse photometer

helps to quickly determine an appropriate exposure time and defocus setting.

The zoom setting of the image display is most easily set by rolling the mouse

wheel to zoom in and out. If a mouse wheel is not available, image zoom can be

controlled by the four magnifying glass icons on the right side of the quick access row.

Image pan is controlled by a left-click and drag in the image. The five quick access icons

shown as depressed in Figure 19 control whether the aperture identifiers are displayed,

which components of the aperture are displayed, and if the aperture is to be centroided on

the star when it is placed.

If a time series of images is opened as an image stack, a scroll bar is displayed
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Figure 19. The AIJ image display. A wide range of astronomy specific image display
options and image analysis tools are available from the menus, quick access icons, and
interactive histogram. See text for details.
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directly under the image as shown in Figure 19. The scroll bar can be moved left and right

to display different images in the sequence. The right-pointing arrow to the left of the

scroll bar will animate the image sequence at a predefined speed.

If WCS header information is available, AIJ will automatically calculate the x-axis

and y-axis plate scales and the orientation of the image on the sky, and optionally display

this information in the image overlay. A right-click and drag in an image will report

arc-length in place of integrated counts in the lower-right-hand box above an image. New

object annotations can be added manually or target names can be extracted from SIMBAD

and displayed by right-clicking on an object in an image.

4.1.3 Data Processor

The Data Processor (DP) module provides tools to automate the build of master

calibration images, automate calibration of a time series of science images, and optionally

perform differential photometry and light curve plotting. The DP module is started by

clicking the "DP" icon
( )

on the AIJ Toolbar (labeled 7 in Figure 18). The user

interface is shown in Figure 20. DP operates much like a script in that it processes selected

calibration and science images in a user defined manner. Fields are provided to define the

directory/folder locations and filename patterns of data to be processed. Checkboxes are

provided to enable various tasks that can be included in the data processing session.

Disabling certain checkboxes will automatically disable other related input fields as

appropriate to help the user understand which input fields are interconnected.

The path and image filename pattern matching the raw science images to be

processed are set in the Science Image Processing sub-panel. Files can be dragged and

dropped from the OS into a field of the DP panel to minimize typing. The number of files

matching the pattern at the specified path shows in the right-hand column labeled Totals.

The science images can be further filtered based on the image sequence numbers in the

filename by entering minimum and/or maximum numbers in the second row of the

sub-panel.

81



Master bias, dark, and flat images are created as discussed in §2.2. The paths and

filename patterns matching the raw calibration images are set in the "build" line of the

Bias Subtraction, Dark Subtraction, and Flat Division sub-panels. As with the science

images, the number of files matching the pattern for each calibration set shows in the

right-hand column labeled Totals. If the master calibration files have been previously

constructed, the Build checkbox in each sub-panel can be disabled to skip any or all of the

master builds processes.

Bias subtraction, dark subtraction, and flat-field division are implemented as

discussed in §2.2 and can be individually enabled. The master calibration image paths and

filenames are specified on the Enable line of each sub-panel.

The Image Correction sub-panel provides the option to implement CCD

nonlinearity correction as specified and measured in §2.2.2. The FITS Header Updates

sub-panel provides options to automatically plate solve each science image and/or add

new calculated astronomical data such airmass, time in BJDTDB, target altitude, etc. to the

science image header information. The Save Calibrated Images sub-panel offers several

file format and file naming conventions available for saving the calibrated images.

The Post Processing sub-panel provides options to run Multi-Aperture (see §4.1.4)

and Multi-Plot (see §4.1.5) after each image is calibrated to build and display a light curve

as the data are calculated. This feature is particularly useful for real-time reduction of data

at the telescope. Other options allow the current light curve plot and image display to be

written to a file after each science image is calibrated. These images can be used to update

websites to show the progress of observations.

The Control Panel sub-panel provides control over the data reduction process. If

the Polling Interval is set to zero, all of science images will be processed and then DP will

return to the stop state. This mode is ideal for post-observation calibration of data. To

calibrate data in real-time, the Polling Interval is set to a positive number n (in seconds).
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After all science images matching the filename and number filters have been

processed, DP will search for new files matching the pattern every n seconds. If DP is

operating in this mode while observations are underway, calibration of a new image

written from the camera will be started within n seconds, and optionally processed by

Multi-Aperture to update the light curve plot.

4.1.4 Multi-Aperture

Multi-Aperture (MA) automates the task of performing differential photometry on

a time-series of images. Various settings are presented in a set-up panel, and then the

apertures are placed and adjusted interactively by clicking near stars directly in the image

display. The algorithms used to calculate the photometry, differential photometry, and

uncertainties in those values are discussed in Chapter 2.

The MA module is launched by clicking the MA icon
( )

above an image or in

the AIJ Toolbar. The MA set-up panel shown in Figure 21 opens. The top two scroll bars

allow the user to set the range of images to be processed. The three scroll bars

immediately below set the aperture radius in pixels, the inner radius of the sky background

region, and the outer radius of the sky background region.

The "Use previous apertures..." checkbox allows the previously defined set of

apertures to be re-used. Aperture definitions can also be stored and reopened from disk in

the File menu of the image display. If WCS headers are available and the "Use RA/Dec..."

checkbox is selected, the saved apertures will be placed according to RA and Dec rather

than by x and y pixel coordinates. If the "Reposition aperture to object centroid" checkbox

is selected, a centroid algorithm will attempt to center the aperture on the nearest star. The

"Remove stars from background" checkbox enables the iterative 2σ cleaning of the

sky-background region described in §2.5.

If "Vary photometer aperture radius based on FWHM" is enabled, the user defined

multiplicative factor and the average of the FWHM values measured in all apertures is

used to set the aperture radius in each image of the time-series. This mode may improve
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Figure 21. The AIJ Multi-Aperture set-up user interface. Multi-Aperture automates the
task of performing differential photometry on a time-series of images. Various settings are
available in the set-up panel, and then the apertures are placed and adjusted interactively
by clicking near stars directly in the image display. See text for more details.

85



photometry when seeing is varying significantly throughout a time-series. As discussed in

§2.6, this mode should not be used in crowded fields. The other option settings on this

page are described in the AIJ user manual.

The Aperture Settings button at the bottom provides access to two panels

containing detailed settings for the photometric measurements. When all options have

been set, the "Place Apertures" button causes the set-up panel to close and the program

waits for the apertures to be defined by user clicks near stars in the first image of the

time-series. If the "Use previous apertures..." option is enabled, the user clicks near the

first star in the set (usually the target star), and all other apertures are placed relative to the

first aperture. If the "Use RA/Dec..." option is also enabled, no clicks are required to apply

the stored apertures since they are placed automatically at the calculated pixel locations

corresponding to the stored WCS coordinates.

By default, a help panel opens that describes actions available at each step during

aperture definitions. Left-clicking inside an aperture deletes the aperture. An aperture can

be moved by left-clicking inside it and dragging it to a new position. An aperture can be

changed from a target to comparison aperture and vice-versa by shift-left-clicking inside

the aperture. Other options are available as listed in the help panel.

When all apertures have been defined as desired, a right-click or press of the

<Enter> key will start the automated differential photometry process on all images defined

in the set-up panel. If the "Use RA/Dec..." option is enabled, apertures will first be located

on each image in the series according to the WCS information in the image header. If not,

the aperture placements start on each subsequent image in the series at the same place in

x,y space as in the previous image. In both cases, if centroid is enabled for a particular

aperture, the centroid function will attempt to center the aperture on the nearest star. For

telescopes with poor tracking/guiding or requiring a "meridian flip" during the time-series,

the images should be plate solved so that the "Use RA/Dec..." option can be enabled to

properly find the initial aperture placements in each image.

The photometry data is written to a "measurements table" and optionally plotted by
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the Multi-Plot program as MA progresses through the time-series.

4.1.5 Multi-Plot

Multi-Plot (MP) provides a multi-curve plotting facility that is tightly integrated

with differential photometry and light curve fitting. MA can automatically start MP, or

MP can be manually started by clicking the MP icon
( )

on the AIJ Toolbar. If a

measurement table has been created by MA or opened from the OS, MP will

automatically create a plot based on the last plot settings. Alternatively, plot templates can

be saved and restored to easily format commonly created plots. Plotting controls are

accessed in two main user interface panels.

The Multi-plot Main panel is shown in figure 22. Controls include the selection of

the default x-axis dataset from a pull-down list of all data columns in the measurements

table, the maximum number of dataset controls and detrend variables displayed in the

Multi-plot Y-data panel shown in Figure 23, plot title and subtitle, legend placement and

options, x− and y−axis label and scaling options, and the overall plot size in pixels. The

V.Marker 1 and 2 controls provide the option to plot up to two vertical red dashed lines

with labels. These are commonly used to mark the predicted ingress and egress times on

exoplanet transit plots.

The bottom row provides access to other x-axis controls that are used for the

plotting and fitting of all y-datasets. The Meridian Flip settings allow the time of the

telescope’s meridian flip to be specified (if applicable) and to optionally mark that time

with a light blue dashed vertical line. If meridian_flip is selected as a detrending

parameter for a dataset in the Multi-plot Y-data panel, the fitting routine attempts to

remove any baseline offsets from one side of the meridian flip to the other. The Fit and

Normalize Region Selection options allow the user to specify additional x-axis points used

in fitting. For example, the Left and Right settings are used to mark the regions used to

normalize the data (which normally exclude the in-transit portion of the light curve). Also,

the x-axis mid-point between the Left and Right settings is used as the model fit starting
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Figure 22. The AIJ Multi-plot Main panel user interface. The Multi-plot Main panel pro-
vides access to plotting controls that affect the overall plot. Important controls include the
default x-axis dataset (usually a time dataset such as BJDTDB), the title, legend, and axis
labels, and plot size and scaling settings. The bottom row provides several settings used for
detrending, normalization, and light curve modeling. See text for more details.

point for the transit model parameter TC. The Left Trim and Right Trim settings can be

used to exclude leading and/or trailing data from the normalization and fitting processes.

A gray dashed line can optionally be displayed for any of these x-axis settings.

Figure 24 shows an example plot that demonstrates many of the Multi-plot Main

settings mentioned above. Additional options are available in the menus at the top of the

Multi-plot Main panel.

The Multi-plot Y-data panel is shown in Figure 23. Each horizontal row in the user

interface corresponds to an individual plotted dataset. The sample shown allows up to 13

datasets to be plotted on a single plot. The settings shown in Figures 22 (Multi-plot Main)
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and 23 (Multi-plot Y-data) produce the plot shown in Figure 24. The top row of controls

labeled "1" under the Dataset heading produce the raw normalized light curve shown as

solid blue dots near the top of the plot. Note in particular the Y-data column selected

(rel_flux_T1) and the Norm/Mag Ref mode selected
( )

. The green areas in the

Norm/Mag Ref mode icon indicate the regions of the light curve (relative to the Left and

Right markers on the Multi-plot Main panel) that are used to normalize the data. In this

case, the in-transit data are not included in the calculation of the normalization parameter.

The second row of plot controls (Dataset 2) again plot the rel_flux_T1 data, but this

time after simultaneously detrending and fitting the data as set up in the fit panel shown in

Figure 25, which will be discussed in §4.1.6. Note the reduced systematics and scatter in

the data. This row of controls uses the Fit Mode selection
( )

to enable the fit panel.

Note that the "then Shift" column is set to −0.01 which shifts the transit baseline down to

y = 0.990 on the plot for clarify. The light curve model residuals are shown as open red

circles. The residuals plot controls are available in the fit panel corresponding to the light

curve.

Plot datasets 3-9 display the first seven comparison star differential light curves.

The Fit Mode selection
( )

, being completely green, selects all data for detrending,

and the flat red line indicates that no transit model is fit (since no transit event is expected

in the comparison stars). Note that the normalize mode used is all green also, since all

comparison star data can be used for normalization. Each comparison star light curve is

shifted from the other light curves for clarity using the "then Shift" setting. Note that

datasets 5, 8, and 9 have been binned by 2 using the Bin Size setting to reduce the scatter

for plotting purposes.
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Each comparison star light curve has been detrended against airmass. In this

example, MP is set to allow up to four trend datasets to be selected for detrending. Note

that the first Trend Select button is enabled and AIRMASS is showing in the Trend

Dataset column for all comparison stars. If the resulting comparison star light curves are

relatively flat, then they should perform well as part of the comparison ensemble.

Plot datasets 10-13 display four diagnostic curves. These curves are plotted relative

to the size of the plot page by selecting the Page Rel option on each row. In this mode, the

Scale setting forces the plot of the data to fit within a fixed percentage of the plot range.

The "then Shift" value in this mode is also a percent of the plot range with 0 being in the

middle of the plot. This mode makes scaling of data to fit on a plot easy when the shape of

a curve is important, but the actual values of the data are not important.

Many other plotting options are available, including plotting of error bars (Auto

Error), legend options, input and output in magnitudes, data binning, and the option to

select independent x-axis datasets for each y-axis dataset (i.e. the X-data pull-down menus

in the Multi-plot Y-data panel).

Datasets displayed in a plot have typically been modified in one or more ways (e.g.

normalized, detrended, converted to/from magnitude, scaled, shifted, binned, etc.). The

displayed values can be added to the measurements table as new data columns for further

manipulation or permanent storage using the New Col button
( )

on the left-hand side

of the row corresponding to the plotted data. Model residuals and sampled versions of the

model can also be saved to the measurements table using this button.

The automatically created (optional) legend entries are shown at the top of the plot

in Figure 24, with the light curves plotted below. Most of the legend entries are

automatically generated based on the dataset names known to be produced by MA. By

default, the RMS values are automatically calculated and displayed in the legend for

detrended and/or fitted light curves. The light curve model parameter values are optionally

shown for fitted light curves. The predicted time of ingress and egress are shown as red

dashed vertical lines. The meridian flip time is indicated by the light blue vertical dashed
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line (no meridian flipped actually occurred for the example observations), and the Left and

Right gray dashed vertical lines show the boundaries of the normalization, detrending, and

fitting regions.

The plot can be zoomed by placing the mouse pointer inside the plot image and

rolling the mouse scroll wheel. Also, a left-click in the plot image zooms in by one step,

and a right-click zooms back out to the full plot. The plot can be panned with a left-click

and drag with the mouse. Data points can be removed from the plot and measurements

table by holding the shift key and moving the mouse over the data point until it is

highlighted. Then, while continuing to hold shift, a left click will remove the data point.

In case a mistake is made, a shift-right-click will retrieve the deleted point. As shortcuts,

the Left vertical marker can be positioned at the mouse pointer with a control-left-click

and the Right vertical marker can be positioned with a control-right-click.

4.1.6 Light Curve Fitting and Detrending

Light curve fitting is enabled for a particular dataset in the Multi-plot Y-data panel

by selecting the Fit Mode icon showing the red transit model on a full green background( )
. When this mode is selected, a Fit Settings panel will be displayed for the

dataset as shown in Figure 25. The settings in the figure produce the light curve model fit

shown in the example plot of Figure 24. The transit model fitted to the data is described in

§1.5.1. AIJ is currently limited to finding the best fit model parameter values and does not

provide estimates of the parameter uncertainties. Tools for estimating the parameter

uncertainties are described in §4.2 and §4.3.

Before making adjustments in the Fit Settings panel, refer to paragraph three of

§4.1.5 and properly configure the Fit and Normalize Region Selection settings and

optionally the Meridian Flip settings in the Multi-plot Main panel. Also make sure the

Norm/Mag Ref mode and other settings are configured properly in the Multi-plot Y-data

panel, as described in the last three paragraphs of §4.1.5.

The parameter settings in the User Specified Parameters sub-panel are not fitted.
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Figure 24. An AIJ Multi-Plot example plot. The plot of a WASP-12b transit under poor
observing conditions is shown. The top dataset plotted with solid blue dots is the raw
normalized differential photometry. The solid red dots show the light curve after simulta-
neously detrending and fitting to an exoplanet transit model, which is shown by the red line
through the data. Note the reduced systematics and scatter in the detrended data. The open
red dots show the model residuals. See the text for descriptions of the other plotted data.
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Figure 25. The AIJ light curve model fitting and detrending panel. The settings produce the
light curve model fit shown in the example plot of Figure 24. Light curve prior center and
width values can optionally be set by the user to constrain the model fit. Direct access to
all detrending parameters is also provided along with more flexible settings. Several values
calculated from the model parameters are displayed, along with several statistical values
usual for assessing data quality and model validity. See text for more details.
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The period of the exoplanet’s orbit is not well constrained by the transit model, but its

value will impact the best fit values of some of the fitted parameters, so the Period value

must be entered. Normally, the orbital period is known from RV or wide-field survey

photometric data. The Host Star Parameters in the same sub-panel are only used to

estimate the true planet radius from the fitted parameter RP/R∗. The host star parameter

values are interrelated by tables in Cox et al. (2001) for main sequence stars. The only

value used in the calculation of RP (displayed near middle of the right-hand side of the

panel) is R∗, so that value should be entered directly if known. Otherwise, entering any

one of the other host star parameters will produce an estimate of R∗.

The Transit Parameter sub-panel has seven rows for the seven transit model

parameters described in §1.5.1. Prior Center values will need to be set for the seven

parameters to ensure the correct χ2 minimum is found. The top four parameters shown in

the sub-panel are extracted from the light curve data by default. In the odd case that those

estimated values are not correct, the values can be entered directly by the user. In the

example shown, the Inclination prior center value has been set by the user, but no

constraints have been placed on the range of valid final fitted values (although the upper

end is limited to 90◦ by the definition of inclination). The Quad LD u1 and u2 coefficient

values have been set by the user, and the fitted values have been locked to those values by

enabling the Lock checkbox beside each one. The fixed values of u1 and u2 were

extracted from the Claret & Bloemen (2011) theoretical models using a website tool6. The

best fit transit model parameter values are displayed in the Best Fit column. A green box

around the fitted parameter values indicates that the minimization converged to a value

less than the Fit Tolerance within the Max Allowed Steps. Both minimization parameters

can be set at the bottom of the fit panel in the FIT Control sub-panel, but the default values

normally work well.

The bottom row in the Transit Parameter sub-panel shows several values that are

calculated from the best fit model as described in §1.5.1. The host star’s density, ρ∗, is

6http://astroutils.astronomy.ohio-state.edu/exofast/limbdark.shtml
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particularly interesting, since a good estimate can be derived from the transit light curve

data alone.

The Prior Width column allows the user to optionally limit the range of a

parameter’s fitted value. Prior Width values are not normally needed, but may be helpful

in fitting an ingress- or egrees-only partial transit. The StepSize column allows the user to

set a custom initial minimization step size. However, the default values for each parameter

normally work well, so setting custom values is not usually necessary.

The Detrend Parameters sub-panel duplicates the detrend settings on the Multi-plot

Y-data panel. However, the fit panel provides direct access to all detrend parameters and

settings. Prior center values, widths, and fitting step sizes can optionally be set for detrend

parameters as well.

The Fit Statistics sub-panel lists five statistical values that allow the user to assess

the quality of the data and validity of fitted model. The values displayed from left to right

are RMS of the model residuals, χ2 per degrees of freedom (or reduced χ2), Bayesian

Information Criterion (BIC), the number of degrees of freedom, and the total χ2. BIC is

defined as

BIC = χ2 + p lnn, (23)

where p is the number of fitted parameters, and n is the number of fitted data points. The

BIC can be used to determine whether the addition of a new parameter value to a model

(in particular an optional one such as a detrend parameter) provides a significant

improvement in the fit. If the BIC value decreases by more than 2.0 when a model

parameter is added, then the new model is preferred over the model with fewer parameters.

A larger decrease in the BIC value suggests a stronger preference for the new model.

The Plot Settings sub-panel provides options for plotting the light curve model and

the residuals. The Fit Control sub-panel settings are not normally needed, since by default

the model fit recalculates any time a value in the panel is changed, and since the Fit

Tolerance and Max Allowed Steps settings work for most light curve datasets.
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4.1.7 Comparison Ensemble Management

The MP environment allows the user to include or exclude comparison stars from

the comparison ensemble without re-running MA, as long as apertures were defined for all

potentially good comparison stars in the original MA run. The Multi-plot Reference Star

Settings panel shown in Figure 26 provides a checkbox corresponding to each target and

comparison star included in the original MA differential photometry run. Deselected stars

are considered target stars and selected stars are comparison stars belonging to the

comparison ensemble. When a star is added to or removed from the ensemble, the relative

flux values for each star are recalculated and the measurements table and plot are updated.

The Cycle Enabled Stars Less One button allows the user to quickly cycle through

the comparison ensemble removing one star at a time so that poor comparison stars can be

quickly identified and removed from the ensemble. Or, the Cycle Individual Stars button

can be used to quickly assess the quality of each comparison star individually by quickly

cycling through each one as a single comparison star.

4.1.8 Coordinate Converter

Coordinate Converter (CC) converts astronomical coordinates and times to other

formats based on observatory location and target coordinates. CC can be operated as a

module under full control of the user, and it can be operated under the control of DP and

MP to provide automated calculations within those modules. When operated by the user,

all fields are available to be set as desired by the user. When controlled by DP and MP,

only a subset of fields are enabled for user entry of data, while the other fields are under

the control of the program and disabled (grayed-out) to prevent user input. A version of

CC called AstroCC runs completely independent of AIJ and is available for download

from the AIJ website.

The user controlled instance of CC is started by clicking the CC icon
( )

on the

AIJ Toolbar. Figure 27 shows the panel after entering WASP-12 in the SIMBAD Object

ID field, selecting the Observatory ID, and entering the date and time as UTC 2014-04-06
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Figure 26. The Multi-plot Reference Star Settings panel. Stars can be switched from the
comparison ensemble to target stars and vice-versa. All relative photometry values are
recalculated and the the table is updated each time a star type is changed. Target star
IDs start with the green T prefix and have a deselected checkbox. Comparison star IDs
start with the red C prefix and have a selected checkbox. The "Cycle Enabled Stars Less
One" and the "Cycle Individual Stars" buttons speed the task of finding and excluding poor
comparison stars. See text for more details.
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01:40:49. All other coordinate formats, time formats, solar system object proximities and

altitudes, and moon phase are automatically calculated. Note that the red background of

the Moon proximity box indicates that the moon is less than 15◦ from the target (12.68◦ in

this case).

The active coordinate source used to calculate the other coordinate formats has a

green border (J2000 Equatorial in this case). Any coordinate or time format can become

the active source by directly entering a value into the field and pressing <Enter>. The two

fields in the UTC-based Time sub-panel shown in Figure 27 with a green background

show the time of PM nautical twilight (upper) and AM nautical twilight (lower) for the

date and observatory location specified. If the time showing in the other time fields is

during dark time, the two twilight field backgrounds are green, otherwise they are gray.

The BJDTDB format that is preferred for exoplanet research requires dynamical

time as the time-base. Dynamical time accounts for the changing rotational speed of the

Earth by implementing leap-seconds. Leap-second updates are not periodic, but are

announced six months before taking effect. The US Naval Observatory website posts a list

of all leap seconds along with the effective date of each one. To ensure that conversion to

BJDTDB time format is accurate, CC’s leap second table should be updated by clicking the

Update button in the Dynamic Time sub-panel every 6 months or so.

DP creates an instance of CC (DPCC), and depending on user settings, data can be

extracted from FITS header information or entered manually to control the settings used

by DPCC to calculate new astronomical values to add to the calibrated image’s FITS

header information. If the FITS header contains the time of observations, the target’s

SIMBAD ID or coordinates, and the observatory’s ID or coordinates, DPCC calculations

can be executed with no user input. If target and/or observatory information is not

available in the header, that missing information can be entered by the user as previously

shown in Figure 27.

MP creates an instance of CC (MPCC), which allows the user to calculate new

astronomical data and add it to the measurements table. The menu item at Multi-plot
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Figure 27. The AIJ Coordinate Converter panel. The displayed state of the panel is shown
after entering WASP-12 in the SIMBAD Object ID field, selecting the Observatory ID, and
entering the date and time as UTC 2014-04-06 01:40:49. All other coordinate formats, time
formats, solar system object proximities and altitudes, and moon phase are automatically
calculated. Note that the red background of the Moon proximity box indicates that the
moon is less than 15◦ from the target (12.68◦ in this case). The active coordinate source
used to calculate the other coordinate formats has a green border (J2000 Equatorial in this
case). Any coordinate or time format can become the active source by directly typing a
value into the field and pressing <Enter>. See text for more details.
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Main->Table->"Add new astronomical data columns to table" opens the panel shown in

Figure 28. In that panel, the user sets the time format and data column name to be used for

extraction of time from each row in the measurements table. An instance of CC referred to

as MPCC is also opened along with the Add Data panel. In the RA/Dec Source "Manual"

mode shown in Figure 28, the target coordinates and observatory location should be

manually entered into the MPCC panel. Then, when the Update Table button is clicked,

the settings shown in Figure 28 will cause new data columns AIRMASS, HJD_UTC, and

BJD_TDB to be calculated and added to the measurements table. The new data columns

can now be used for plotting, detrending, etc., and the updated measurements table can be

saved to disk.

4.1.9 FITS Header Editor

Information contained in the header of any FITS image open in AIJ can be

displayed and optionally edited. The information is displayed by clicking the FITS Header

Editor icon
( )

above any image display. The user interface of the header editor is

shown in Figure 29. A FITS header is made up of keywords and associated value and

comment fields. FITS header keywords and values should not be edited unless the user

understands the impact the changes may have on other programs that interpret the image

data based on the header values.

A header value is edited by double-clicking in the field and editing the value using

the keyboard. The keyword values are locked by default, but can be edited after

deselecting the Lock Keyword Values checkbox. The Value field may contain a string,

integer, real number, or boolean (T or F). AIJ checks the formatting of the Value field to

ensure that the new entry meets the FITS specification for one of the data types allowed.

The Type field is automatically set based on contents of the Value field and cannot be

directly edited. Rows with keyword values SIMPLE, BITPIX, NAXIS, NAXIS1, and

NAXIS2 can not be edited since these values are automatically set by AIJ according to the

image’s characteristics. The END keyword must always be present in the last row and
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Figure 28. The AIJ Add astronomical data to table panel. The user sets the time format and
data column name to be used for extraction of time from each row in the measurements
table. An instance of CC referred to as MPCC is also opened along with the Add Data
panel. In the RA/Dec Source "Manual" mode shown here, the target coordinates and obser-
vatory location should be manually entered into the MPCC panel. Then, when the Update
Table button is clicked, the settings shown here will cause new data columns AIRMASS,
HJD_UTC, and BJD_TDB to be calculated and added to the measurements table.
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cannot be edited.

The buttons along the bottom of the editor, from left to right, allow the user to

delete the selected row (which shows highlighted in blue) of data from the header, insert a

new row below the currently selected row, save the contents of the FITS header to a text

file, save the new header to the image in memory, save the image and new header to disk

(and memory) using the same filename, save the image and new header to disk using a

new filename, or cancel the changes and exit the editor.

4.1.10 Astrometry/Plate Solving

The AIJ astrometry feature "plate solves" images using an internet connection to

the astrometry.net web portal at nova.astrometry.net (Lang et al., 2010). After a successful

astrometric solution, WCS headers will be added to the FITS image header and the file

can optionally be automatically resaved with the new headers. AIJ searches the image and

extracts the source locations. Only the x,y coordinates for a subset of the brightest

extracted sources are sent to astrometry.net. The actual image is not transferred across the

network, which limits network traffic and improves the solve time.

A left-click on the Astrometry icon
( )

above an image opens the Astrometry

Settings panel shown in Figure 30. A right-click on the Astrometry icon starts the plate

solve process using the previous settings panel values. DP also provides the option in the

FITS Header Updates sub-panel (see Figure 20) to plate solve each image as part of the

calibration process. A free user key must be obtained from nova.astrometry.net and

entered into the User Key field on the Astrometry Settings panel to enable the astrometry

feature.

Images can be blindly solved with no knowledge of the sky coordinates or plate

scale of the image. The default settings shown in Figure 30 should work for most images.

Solve time may be faster if the Plate Scale is known and entered into the field on the setup

panel. If the approximate sky coordinates of the center of the image are known, entering

the Center RA and Center Dec values may also improve solve time. However, the search
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Figure 29. The AIJ FITS Header Editor user interface. Most fields can be directly edited
by double clicking in the fields and editing the contents using the keyboard. The DELETE
button at the bottom of the display will delete the selected row. The INSERT button adds
a new row under the currently selected row. The header can be saved to a text file, back to
the image header in memory, or directly to disk. See the text for more details and a list of
fields that cannot be directly edited.
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Figure 30. The AIJ Astrometry/Plate Solve Settings panel.

Radius must be at least as large as the field of view in the image. If an image has been

defocused to improve photometric precision, the "Centroid Near Peaks" option may

improve the determination of the location of the center of each source.

When the START button is pressed, the setup panel closes and the plate solve

process starts. Progress is shown in the lower half of the AIJ Toolbar. By default, a log file

is created to record the results of each plate solve. If a time-series of images have been

opened into an AIJ image stack, the full set of images can be solved by selecting Process

Stack. The entire plate solve process takes ∼ 10 − 20 seconds per image.

When a field is successfully solved, Astrometry.net returns a list of sources that are

in the image. The source names can be displayed in the image by enabling Annotate

and/or saved to the FITS header by enabling Add to Header.
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4.1.11 Image Alignment

The images within a stack can be aligned using the Stack Aligner icon
( )

above

an image stack. The Stack Aligner panel shown in Figure 31 opens and provides two

methods to align images. At the time of writing, Stack Aligner only supports image

translation for alignment. Image rotation and scaling are not currently implemented.

If all images in the stack have been plate solved, the images can be aligned using

information from the WCS headers. To use that mode, enable the "Use only WCS

headers..." option and click the OK button to start the alignment process. All images in the

stack will then be aligned to the first image.

If images have not been plate solved, apertures are used to identify alignment stars.

Aperture placement is performed in the same way as described for Multi-Aperture in

§4.1.4. Images are aligned based on the average of alignment star centroid offsets between

consecutive images. Aperture alignment works best when at least a few (∼ 3 − 5) isolated

stars are available in the images. Aperture alignment will fail if the shift from one image

to the next is larger than the aperture radius. However, the aperture radius can be made

arbitrarily large as long as centroid doesn’t capture a neighboring star instead of the

alignment star. For cases with large image shifts, the "Use single step mode" option allows

the user to click on the first alignment star in each image of the sequence, avoiding

apertures centroiding on the wrong star. However, this mode requires the user to click in

each image of the sequence, which may become impractical for very long image

sequences.

4.1.12 AstroImageJ Updater

AIJ can be easily upgraded to the latest version using the update facility at

Toolbar->Help->Update_AstroImageJ. The AstroImageJ Updater panel shown in Figure

32 opens. The latest release notes are displayed by clicking the Release Notes button. The

default value displayed in the Upgrade To: field is the latest version. The update is

installed by clicking the OK button. When the installation is finished, AIJ automatically
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Figure 31. The AIJ Stack Aligner panel. Images can be aligned using information in the
WCS headers, if images have been plate solved. Otherwise, apertures are placed around
selected alignment stars, and images are aligned based on the centroid offsets between
consecutive images. See text for more details.
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Figure 32. The AstroImageJ Updater panel. AIJ updates are easily installed by selecting
the desired release number in the Upgrade To: field. The latest release notes are displayed
by clicking the Release Notes button. The selected update is installed by clicking the OK
button. When the installation is finished, AIJ automatically closes. The new version is
activated when AIJ is restarted.

closes. The new version is activated when AIJ is restarted.

4.2 EXOFAST

EXOFAST (Eastman et al., 2013) is computer code that fits exoplanetary transit

photometry and RV variations simultaneously or separately along with host star

spectroscopic parameters. EXOFAST determines the model parameter uncertainties and

covariances using Markov Chain Monte Carlo. The transit model is described in §1.5.1.

EXOFAST can fit only one transit light curve and/or one RV data set. The program is

written in the proprietary IDL language and requires the purchase of an IDL license,

although there is a web-based interface7 that runs under an IDL demo license.

EXOFAST first finds the best fit to the RV and light curve data separately using the

AMOEBA (Nelder & Mead, 1965) downhill simplex method to find the local χ2

minimum of the model fits. To ensure that the correct local minima are found, the user
7http://astroutils.astronomy.ohio-state.edu/exofast/exofast.shtml
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should provide reasonable priors on the starting points for the model parameters. For

analysis of most planets discovered by ground-based wide-field surveys, typical hot

Jupiter-like priors work well.

Once the best fits to the RV and light curve data are found, the data uncertainties

are scaled such that the χ2
red = 1.0 for each of the best fit models. Scaling the errors in this

way attempts to correct for underestimated or overestimated data uncertainties before

continuing with the analysis.

With the uncertainties scaled, the RV and light curve best fit parameter values are

used as a starting priors for a joint fit of the RV and transit data. M∗ and R∗ are constrained

by the spectroscopy parameters Teff, [Fe/H], and logg⋆ through the Torres relations

(Torres et al., 2010). The joint best fit model is then used to start a Markov Chain Monte

Carlo (MCMC) run (see Eastman et al. 2013 for an MCMC overview). The MCMC run

perturbs the model parameters in a serial fashion, accepting new model parameters based

on certain criteria involving the new χ2 value at each step. At the end of the MCMC run,

the resulting parameter distributions (i.e., the histogram of steps for each parameter) are

proportional to the posterior probability of each parameter. EXOFAST quotes the median

of the distribution of each parameter as the parameter’s final value and the 34%

confidence interval on either side of the median as the uncertainty.

Although EXOFAST is not used directly in my research, it is the core code from

which multi-EXOFAST is derived. Multi-EXOFAST is the analysis tool used to perform

all global system fits presented herein.

4.3 Multi-EXOFAST

Multi-EXOFAST is based on and operates in the same way as EXOFAST.

However, it is designed to handle multiple transit light curves, in multiple filter bands, and

RV datasets from multiple telescopes (including Rossiter-McLaughlin RV data). The

power of multi-EXOFAST is that it enforces a common (or global) set of physical system

model parameters for all of the data sets. For example, the orbital inclination must be the
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same for all data sets describing a transiting system. The global system parameters enable

the use of multiple light curves and RV data to better constrain the system parameters and

reduce parameter uncertainties. Another important benefit is that a common set of system

parameters reduces the total number of fitted model parameters compared to fitting all of

the data sets individually. The reduction in model parameters then allows more detrending

parameters to be included in the light curve model without creating unmanageable

degeneracies in the fit. I take advantage of this and include many detrending parameters

for the global fits presented herein.

Jason Eastman provided the core of the multi-EXOFAST code (private

communication), but I have implemented several minor changes and bug fixes that have

been folded into the version used for my research and the global fits for all KELT planet

discovery papers since KELT-6b (see Chapter 8). Changes I have made include the ability

to use a different number of detrending parameters for each light curve, a more user

friendly front-end program to control plotting and other options from the front-end

program rather than having to make code changes in the individual IDL procedures that

make up multi-EXOFAST. Also, with Eastmann’s support, I have fixed several bugs that

were discovered during the KELT-6b global modeling effort presented in Chapter 8.
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CHAPTER 5

WASP-12b CHARACTERIZATION AND TTV ANALYSIS

5.1 Introduction

WASP-12b is a hot Jupiter exoplanet discovered by the WASP survey (see §1.6.1)

and announced by Hebb et al. 2009 (H09). It orbits a V ∼ 11.7 evolved late-F star and has

an orbital period of P = 1.09 d, a semi-major axis of only 3.1 stellar radii, and a highly

inflated radius RP = 1.8 RJ. Bergfors et al. (2013) reported a faint (∆i′ = 4.03) elongated

object ∼ 1′′ from WASP-12. Crossfield et al. (2012) confirmed the detection. Using the

Keck telescope, Bechter et al. (2014) resolved the neighboring object and confirmed it to

be a binary composed of two M3V stars that are orbiting WASP-12 as part of a

hierarchical triple star system. The projected separation of the binary from WASP-12 is

∼ 300 AU, corresponding to a period of several thousand years, so any influence on the

orbital dynamics of WASP-12b should be negligible.

The short orbital period of WASP-12b results in relatively frequent opportunities to

observe complete transit events from the ground, which has prompted other groups to

conduct detailed studies of the system. Maciejewski et al. 2013 (M13) acquired 61 partial

or complete transit light curves from 2009 to 2012 from 14 telescopes distributed around

the world. They classified 19 of the transits as high quality based on RMS and transit

coverage of at least 75%. Out of the 19 high quality transits, 11 have both ingress and

egress coverage and baseline data before and after the transit. Data reduction and

differential photometry were performed using differing methods, depending on the

originating observatory. Detrending was implemented by fitting a second order

polynomial and a fixed WASP-12b transit model from Maciejewski et al. (2011), which
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was based on one transit. M13 find tentative evidence for a transit timing variation (TTV)

signal which has a period of 545±22 d and a semi-amplitude of 59±11 s, and they

suggest that the possible perturbing body has a mass of 0.1 MJ and a 3.6 day eccentric

orbit.

In this chapter I present 23 new high-precision transits of WASP-12b. I discuss the

observations in §5.2, data reduction in §5.3, global fitting in §5.4, system parameter

results in §5.5, and TTV results in §5.6.

5.2 Observations

I observed 22 complete and one nearly complete high-precision transits of

WASP-12b with the MORC telescope over the time span of November 2009 to February

2015. The date, exposure time, number of exposures, filter, photometric precision, and the

error scaling factor (as determined by multi-EXOFAST; see §5.4) of each time-series of

observations are listed in Table 1. All observations were guided from the science images

and were defocused to improve photometric precision as discussed in sections 2 and 3. We

carefully synchronized our timing source and converted to BJDTDB as discussed in §3.5.5.

All exposures times were 100 s, resulting in a ∼ 2 minute cadence. All observations were

in the Sloan r′ filter, except for the g′ observation on UT 2010-01-14, the CBB observation

on UT 2011-12-08, and the V observation on UT 2013-11-11. All transit observations

include coverage of pre-ingress baseline, ingress, flat bottom, egress, and post-egress

baseline, except for the light curve on UT 2015-01-01, which has no pre-ingress baseline

or time of first contact coverage. A few of the transits have short gaps due to passing

clouds or equipment problems.

5.3 Data Reduction

All images were calibrated as discussed in §2 using the AIJ Data Processor

module. Calibration included bias subtraction, CCD linearity correction, dark subtraction,
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TABLE 1
Summary of WASP-12b Photometric Observations

Telescope UT Date Filter # Data ExpT2 RMS3 Scale4

MORC1 2009-11-05 r′ 160 100 1.3 1.32
MORC 2009-11-28 r′ 134 100 1.0 1.33
MORC 2010-01-13 r′ 123 100 1.1 1.24
MORC 2010-01-14 g′ 151 100 1.2 1.46
MORC 2010-11-09 r′ 129 100 1.2 1.70
MORC 2010-11-10 r′ 119 100 0.9 1.29
MORC 2011-02-11 r′ 138 100 0.9 1.22
MORC 2011-12-08 CBB 148 100 0.9 1.30
MORC 2012-02-27 r′ 167 100 1.0 1.31
MORC 2012-02-28 r′ 135 100 1.2 1.43
MORC 2012-03-10 r′ 148 100 1.2 1.40
MORC 2012-11-18 r′ 135 100 1.0 1.26
MORC 2012-12-12 r′ 139 100 1.0 1.09
MORC 2012-12-23 r′ 180 100 1.1 1.27
MORC 2013-01-05 r′ 160 100 1.1 1.20
MORC 2013-01-27 r′ 194 100 1.3 1.07
MORC 2013-11-11 V 93 100 1.3 1.15
MORC 2013-12-28 r′ 167 100 1.1 1.40
MORC 2014-01-20 r′ 181 100 1.1 1.25
MORC 2014-12-21 r′ 201 100 1.4 1.34
MORC 2015-01-01 r′ 150 100 1.9 1.20
MORC 2015-02-06 r′ 217 100 1.3 1.10
MORC 2015-02-07 r′ 138 100 1.1 1.20

1 MORC=U. of Louisville Moore Obs. 0.6 m RCOS telescope
2 Exposure time in seconds
3 RMS in units of 10−3

4 Error scaling factor as determined by multi-EXOFAST
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and flat-field division. Differential photometry was performed using the AIJ

Multi-Aperture module. A superset of 16 comparison stars were selected, ensuring that

each one had brightness similar to WASP-12 and no nearby stars that might blend into the

aperture. The AIJ Multi-Plot and light curve fitting modules were used to search the

superset of comparison stars for a subset that minimized the best fit transit model residuals

for each time-series . The final comparison ensembles were different for each time-series

due to differing filters and sky transparencies, but each ensemble typically had 10 − 14

comparison stars. A range of fixed and variable aperture sizes were investigated to find the

optimal configuration that minimized transit model residuals for each dataset. The result

was a variable aperture radius with a scaling factor in the range of 0.9 − 1.0×FWHM,

depending on the dataset.

The 23 individual detrended and fitted light curves are shown as black dots in

Figure 33. The red lines show the global fit model from section 5.4. The black dots in

Figure 34 show the results after phasing (using the global fit T0 and P from Table 2),

combining, and binning all of the WASP-12b light curves in 5 minute intervals. The light

curve model is also binned at 5 minute intervals and shown as a red line. This light curve

is not used for analysis, but rather to show the best combined behavior of the transit. The

model residuals shown in the bottom panel have an RMS of 183 ppm.

5.4 Global Fit

Multi-EXOFAST (see §4.3) was used to perform a global fit to all 23 MORC light

curves. As discussed in section §2.9, seven detrend datasets are included with each light

curve to simultaneously detrend the light curves as part of the global fit. The detrend

datasets are airmass, time, sky background, FWHM of the average PSF in each image,

total comparison star counts, and target x-centroid and y-centroid positions on the

detector. The global fit also included SOPHIE RV data from H09 and Husnoo et al. (2011)

and spectroscopic priors of Teff = 6300±200 K and [Fe/H] = 0.3±0.15 from H09. A

spectroscopic prior was not imposed on logg⋆, since the value derived exclusively from
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Figure 33. All 23 WASP-12b light curves. Each light curve is detrended and fitted as
discussed in §5.4. The exposure time for each data point is 100 s. The black points are the
normalized and detrended differential photometric measurements, while the red lines show
the global transit model. Each light curve is shifted on the y-axis for clarity.
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the light curves should be more accurate than the spectroscopic value (e.g. Mortier et al.

2013, 2014). Based on an initial best fit, multi-EXOFAST scales the RV and photometric

errors to target a reduced chi-squared of χ2
red = 1.0 for the global fit. As a result, the H09

RV errors were scaled by 1.45 and the Husnoo et al. (2011) RV errors were scaled by 2.59.

The photometric scaling factors are listed in Table 1 and range from 1.07 to 1.70. The

orbital eccentricity was fixed to zero since secondary eclipse observations by Campo et al.

(2011) and Croll et al. (2011) and RV observations and analysis by Husnoo et al. (2011)

place tight constraints on the circularity of the planet’s orbit. The parameter vsin i⋆ was

constrained to be within 1 m s−1 of 2200 m s−1 (the nominal value from spectroscopy in

H09), since the RM data do not provide a good constraint on the value. Without a tight

vsin i⋆ prior, the model fits would not converge. The phased RVs are shown in Figure 35

and a close-up of the in-transit RM data is shown in Figure 36. The SOPHIE RVs from

H09 are shown as black dots, and the SOPHIE RVs from Husnoo et al. (2011) are shown

as green squares. The RM and RV models from the global fit are shown as red lines.

The Demarque et al. (2004) stellar models were used to estimate M∗ and R∗ from

Teff, logg⋆, and [Fe/H] at each MCMC step. Separate TTV parameters were fit for each

light curve, but common RP/R∗, a/R∗, and i parameters were fit globally to all light

curves. Common sets of quadratic limb darkening parameters, u1λ and u2λ, were

determined for each filter band from the models of Claret & Bloemen (2011) using Teff,

logg⋆, and [Fe/H] at each MCMC step. The publicly available Claret & Bloemen (2011)

limb darkening tables that are included in multi-EXOFAST do not contain coefficients for

the CBB filter band. At my request, A. Claret computed them from the Claret & Bloemen

(2011) models. The nominal CBB band coefficient values for a star with spectroscopic

parameters like WASP-12 turn out to be within 0.02 of the coefficients for the Kepler band

that are already included in multi-EXOFAST. The difference in the coefficients is

negligible for our ground-based data, so I used the Kepler band coefficients for the global

fit.

The ∼ 1′′ stellar binary discovered by Bergfors et al. (2013) is blended with
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Figure 36. WASP-12b phased in-transit RVs and RM model. The SOPHIE RVs from H09
are shown as black dots. The SOPHIE RVs from Husnoo et al. (2011) are shown as green
squares. The red line shows the best fit RM model from the global fit. The RV data have
had the best fit RV model subtracted to remove the orbital velocity component. The bottom
panel shows the model residuals.
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WASP-12 in all of the MORC photometry. The binary is four magnitudes fainter than

WASP-12 in the i′ band, so the ratio of the blended flux to the WASP-12 flux is 1.026 in

the i′ band, and would be slightly less in the r′ band used for most of the MORC

observations. Using the blended flux will therefore underestimate the true transit depth

and RP/R∗ by ∼ 2.6% and ∼ 1.2%, respectively. Based on the nominal blended transit

depth of ∼ 14 mmag from the literature, the nonblended depth would increase by

∼ 0.35 mmag. Any other parameters dependent on the transit depth will also be affected.

Since typical M∗ and R∗ uncertainties from stellar models are ∼ 10% (e.g. Basu, Verner,

Chaplin, & Elsworth 2012) and those uncertainties are not accounted for in this or other

typical works, I do not attempt to account for the flux from the blended binary in the

global system fit.

5.5 System Parameter Results

In addition to the original WASP-12b system parameter analysis by H09, Chan et

al. 2011, 2012 (C12), Southworth et al. (2012), and M13 have performed follow-up

analyses of the WASP-12b system. The follow-up analyses use various tools to fit the

transit data and determine parameter errors, and they use differing methods to constrain

M∗ and R∗, but none self-consistently perform a global system analysis based on the RV

data, spectroscopy, light curves, and stellar models. All of the analyses except M13

included 2 to 4 light curves. M13 simultaneously fit 19 light curves to model the system

parameters, but only light curves were included in the fit.

The system parameter values and uncertainties from a self-consistent global fit to

two RV datasets, 23 MORC light curves, spectroscopic Teff and [Fe/H], the Demarque et

al. (2004) stellar models, and the Claret & Bloemen (2011) stellar limb darkening models

are shown in Table 2, and a comparison to values from the literature is shown in Table 3.

Since M13 used a modeling tool that fits only light curves, many physical parameter

values were not reported and are thus not listed in column M13 of the table. Our transit

derived parameter values agree with the M13 values to well within 1σ, except the highly
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precise orbital periods differ by 3σ. This difference is discussed more in §5.6.

The orbital semi-major axis, a, from this work agrees with the other studies within

∼ 1σ. All of the transit derived parameters agree within 1σ as well, except the C12 RP/R∗

value is 2 − 3σ lower than the values listed from the other studies, which causes significant

differences in some of the derived physical parameters. The C12 inclination value is

higher by 1σ compared to the other studies. It is possible that one or both of the transits

included in their analysis had a systematic that was not compensated for, or there could

have been an astrophysical anomaly, so the C12 results are excluded from the remainder

of the comparison discussion.

The transit derived values RP/R∗, a/R∗, and i agree with the other three studies

within 1σ. The stellar values M∗, R∗, logg⋆, and ρ∗ all agree within 1σ, although M∗ and

R∗ from this work are at the upper end of the 1σ range of the other studies. The planetary

parameter values MP, RP, and TEQ from this work are also higher by ∼ 1σ, and loggP and

ρP are smaller by ∼ 1σ.

The presence of a correlated non-periodic component in the SOPHIE RVs is

especially obvious during the in-transit sequence (Figure 36), which was also noticed and

discussed in Husnoo et al. (2011). SOPHIE is a spectrograph that is optimized for precise

radial velocity measurements in the "High Resolution" mode. However, WASP-12b is on

the faint end of the range of the 1.93 m telescope and was measured in the "High

Efficiency" mode, which is less optimized for RV measurements . Husnoo et al. (2011)

discuss that the RV anomaly could be due to instrumental noise, stellar variability, or a

planetary companion that is unaccounted for in the system. Given their experience with

SOPHIE in "High Efficiency" mode, they conclude that instrumental noise is the likely

cause. The impact on this study is that the value of spin-orbit angle, λ = −90+23
−26, derived

from the global fit, may not be reliable.
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TABLE 2

Median Values and 68% Confidence Intervals for the Physical and Orbital Parameters of
the WASP-12b System from the Global Fit Described in §5.4.

Parameter Units Value
Stellar Parameters:

M∗ . . . . . . . . . . . . Mass (M⊙) . . . . . . . . . . . . . . . . . . . . . . . . . . 1.434+0.11
−0.090

R∗ . . . . . . . . . . . . . Radius (R⊙) . . . . . . . . . . . . . . . . . . . . . . . . . 1.657+0.046
−0.044

L∗ . . . . . . . . . . . . . Luminosity (L⊙) . . . . . . . . . . . . . . . . . . . . . 4.05+0.54
−0.53

ρ∗ . . . . . . . . . . . . . Density (cgs) . . . . . . . . . . . . . . . . . . . . . . . . . 0.446+0.015
−0.014

logg∗ . . . . . . . . . . Surface gravity (cgs) . . . . . . . . . . . . . . . . . . 4.157+0.013
−0.012

Teff . . . . . . . . . . . . Effective temperature (K) . . . . . . . . . . . . . . 6360+130
−140

[Fe/H] . . . . . . . . Metallicity . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.33+0.14
−0.17

λ . . . . . . . . . . . . . . Spin-orbit alignment (degrees) . . . . . . . . . −90+23
−26

Planetary Parameters:
a . . . . . . . . . . . . . . Semi-major axis (AU) . . . . . . . . . . . . . . . . . 0.02340+0.00056

−0.00050
MP . . . . . . . . . . . . Mass (MJ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.470+0.076

−0.069
RP . . . . . . . . . . . . . Radius (RJ) . . . . . . . . . . . . . . . . . . . . . . . . . . 1.900+0.057

−0.055
ρP . . . . . . . . . . . . . Density (cgs) . . . . . . . . . . . . . . . . . . . . . . . . . 0.266+0.015

−0.014
loggP . . . . . . . . . . Surface gravity . . . . . . . . . . . . . . . . . . . . . . . 3.004±0.015
Teq . . . . . . . . . . . . Equilibrium temperature (K) . . . . . . . . . . . 2580+58

−62
Θ . . . . . . . . . . . . . Safronov number . . . . . . . . . . . . . . . . . . . . . 0.02520+0.00087

−0.00084
⟨F⟩ . . . . . . . . . . . . Incident flux (109 erg s−1 cm−2) . . . . . . . . 10.06±0.94

Primary Transit Parameters:
T0 . . . . . . . . . . . . . Linear ephemeris from transits (BJDTDB) 2456176.668258±7.7650773×10−5

P . . . . . . . . . . . . . . Linear eph. period from transits (days) . . 1.0914203±1.4432653×10−7

RP/R∗ . . . . . . . . . Radius of the planet in stellar radii . . . . . 0.11785+0.00053
−0.00054

a/R∗ . . . . . . . . . . Semi-major axis in stellar radii . . . . . . . . . 3.039+0.034
−0.033

i . . . . . . . . . . . . . . Inclination (degrees) . . . . . . . . . . . . . . . . . . 83.37+0.72
−0.64

b . . . . . . . . . . . . . . Impact parameter . . . . . . . . . . . . . . . . . . . . . 0.351+0.030
−0.034

δ . . . . . . . . . . . . . . Transit depth . . . . . . . . . . . . . . . . . . . . . . . . . 0.01389±0.00013
TFWHM . . . . . . . . . FWHM duration (days) . . . . . . . . . . . . . . . 0.10958±0.00023
τ . . . . . . . . . . . . . . Ingress/egress duration (days) . . . . . . . . . . 0.01526±0.00044
T14 . . . . . . . . . . . . Total duration (days) . . . . . . . . . . . . . . . . . . 0.12483+0.00044

−0.00043
PT . . . . . . . . . . . . . A priori non-grazing transit probability . 0.2903+0.0030

−0.0031
PT,G . . . . . . . . . . . A priori transit probability . . . . . . . . . . . . . 0.3679+0.0041

−0.0042
Secondary Eclipse Parameter:

TS . . . . . . . . . . . . . Time of eclipse (BJDTDB) . . . . . . . . . . . . . 2456176.12256±0.00020
RV Parameters:

K . . . . . . . . . . . . . RV semi-amplitude (m/s) . . . . . . . . . . . . . . 226.4±4.1
e . . . . . . . . . . . . . . RV eccentricity . . . . . . . . . . . . . . . . . . . . . . . 0.0 (FIXED)
KRM . . . . . . . . . . . RM amplitude (m/s) . . . . . . . . . . . . . . . . . . 30.99+0.28

−0.29
MP sin i . . . . . . . . Minimum mass (MJ) . . . . . . . . . . . . . . . . . . 1.460+0.075

−0.068
MP/M∗ . . . . . . . . Mass ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.000977±0.000028
γSOPHIE09 . . . . . . m/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.4±3.6
γSOPHIE10 . . . . . . m/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19083.0±3.1
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5.6 TTV Results

The global system model includes a TTV parameter for each of the 23 light curves,

allowing the transit center time at each epoch to differ from the linear ephemeris. The

resulting TTV values are listed in Table 4 and a linear plot of TTV vs. epoch is shown in

Figure 37. The epoch 776 TTV displayed in yellow with the large uncertainty is from the

transit on UT 2015-01-01 which does not have coverage of pre-ingress baseline or time of

first contact and has been excluded from the analysis. This data point illustrates the

importance of including only complete transits with good baseline in high precision TTV

studies. Ignoring epoch 776, the TTVs have a maximum value of 79 s, a standard

deviation of 32.88 s, and reduced chi-squared of χ2
red = 1.1, with respect to the linear

ephemeris. The mean of the timing uncertainty is 31 s.

Figure 38 shows a Lomb-Scargle periodogram of the WASP-12b TTVs. All peaks

are well below the analytical 10% false alarm probably (FAP) indicated by the

short-dashed line. Nevertheless, I investigated the highest power peak at 3.6615 epochs

(3.996 days), which is marked in Figure 38 with a down-pointing arrow labeled 3.6615.

The phased plot and model are shown in Figure 39. The sinusoidal fit has χ2
red = 0.66 and

a semi-amplitude of 34 s (nearly the same as the standard deviation of the TTVs and the

mean timing uncertainty). The 500 epoch signal that was detected and investigated by

M13 is marked in Figure 38 with the down-pointing arrow labeled 500 and shows very

little power in the periodogram. Time domain searches around 500 epochs confirm the

periodogram results.

M13 included TTVs from an early follow-up light curve from the H09 discovery

paper, and two more early light curves from C12. Figure 40 shows the TTVs analyzed by

M13 with timing errors < 40 s (red dots), after rephasing them to the linear ephemeris

derived in this work (solid gray line). The TTVs from this work are indicated by blue dots.

The transits at epochs −1522 and −1224 arrive significantly early relative to the ephemeris

from this work, but not quite so early relative to the M13 linear ephemeris (dashed gray

line).
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TABLE 4
WASP-12b Transit Times

TC (BJDTDB) Epoch TTV (s) σTTV (s) TTV/σTTV

2455140.909815 -949 -48.89 36 -1.33
2455163.830613 -928 35.05 28 1.21
2455209.668946 -886 -79.01 40 -1.93
2455210.761506 -885 19.46 35 0.55
2455509.809713 -611 -63.37 32 -1.95
2455510.902181 -610 27.15 27 0.97
2455603.672606 -525 1.09 25 0.04
2455903.813566 -250 33.41 28 1.19
2455984.577971 -176 -26.91 28 -0.93
2455985.669747 -175 3.82 36 0.10
2455996.583783 -165 -10.62 32 -0.32
2456249.794041 67 53.79 34 1.58
2456273.805140 89 41.01 26 1.57
2456284.718565 99 -26.22 26 -1.00
2456297.816050 111 11.90 26 0.45
2456319.644239 131 -6.87 33 -0.21
2456607.779376 395 8.21 61 0.13
2456654.710469 438 9.90 29 0.33
2456677.630387 459 17.80 28 0.62
2457012.696166 766 -4.41 42 -0.10
2457023.609018* 776 -121.14 71 -1.69
2457059.627132 809 -13.69 30 -0.45
2457060.718388 810 -27.89 31 -0.89
Standard Deviation 32.88 −− 1.00
Mean −− 31 −−

* This measurement is from the transit on UT 2015-01-01 that
does not have coverage of pre-ingress baseline or time of first
contact and has been excluded from the analysis.
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Figure 37. WASP-12b TTVs vs. transit epoch. The epoch is calculated from the global
fit ephemeris in Table 2. TTV is defined as the observed TC minus TC calculated from
the linear ephemeris (i.e. O −C). The epoch 776 TTV displayed in yellow with the large
uncertainty is from the transit on UT 2015-01-01 that does not have coverage of pre-ingress
baseline or time of first contact and has been excluded from the analysis.
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FAP=10%

FAP=1%

500

3.6615

Figure 38. Lomb-Scargle periodogram for the WASP-12b TTVs. Analytical FAP levels
of 10% and 1% are indicated by the short-dashed and long-dashed lines, respectively. The
down-pointing arrow labeled 3.6615 marks the peak power component. The down-pointing
arrow labeled 500 marks the location of the strongest peak in the M13 periodogram.
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Figure 39. WASP-12b TTVs phased at 3.6615 epochs (3.996 days). The sinusoidal fit has
χ2

red = 0.66 and a semi-amplitude of 34 s. The interpretation is a chance fit to noise.

Combining all of the TTV data, a fit to the linear ephemerides gives χ2
red = 1.83

(ephemeris from this work) and χ2
red = 1.71 (ephemeris from M13). Excluding the early

epochs −1522 and −1224 gives χ2
red = 1.48 (this work) and χ2

red = 1.69 (M13). An even

longer time baseline of observations may be required to determine which ephemeris best

describes the WASP-12b orbital period.

The periodogram of the combined TTVs was also investigated. Again, there were

no peaks with a reasonably low FAP, and in particular, little support was found for the 500

epoch signal in either the frequency or time domain.

5.7 Conclusions

I present the results of a self-consistent global fit to 23 MORC light curves (that

have been homogeneously reduced starting from the individual images), two RV datasets,

spectroscopic Teff and [Fe/H], the Demarque et al. (2004) stellar models, and the Claret &
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2008 2009 2010 2011 2012 2013 2014 2015

Figure 40. WASP-12b TTVs from this work and the literature. TTVs from this work are
shown as blue dots. TTVs collected by M13 with timing errors < 40 s have been rephased
to the ephemeris from this work and are shown as red dots. The solid gray line shows the
linear ephemeris from this work. The dashed gray line shows the linear ephemeris from
M13. The numbers across the top indicate the approximate calender year.
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Bloemen (2011) stellar limb darkening models. I reach the space-like photometric

precision of 183 ppm per 5 minute bin in the combined light curve model residuals.

Multi-EXOFAST implements input data uncertainty scaling and MCMC to robustly

determine system parameter uncertainties. Even with the careful treatment, most of the

uncertainties reported herein are improved by ∼ 40 − 50% compared to previous studies.

The derived system parameters in this work are consistent with values from the literature

at a level of 1σ, except for the period of the linear ephemeris compared to M13. M∗, R∗,

MP, RP, and TEQ from this work are at the upper end of the 1σ range of the other studies,

while loggP and ρP are at the lower end of the 1σ range.

The linear ephemeris from this work differs from the M13 ephemeris by 3σ, so a

longer baseline of observations may be required to determine the precise ephemeris. Or, if

the two earliest TTV measurements shown in Figure 40 are accurate, a long term TTV

signal (of about ∼ 20 years) may be causing the apparent changes in the shifting linear

ephemeris. If the two measurements are found to be inaccurate and are removed from the

analysis, the linear ephemeris from this work is a good fit to the combined high-precision

timing data from M13 and this work. The uncertainties in the stellar models have not been

accounted for, so no attempt was made to correct for the flux from the blended binary in

the global system fit. The primary effect is that RP/R∗ is underestimated by about 1.2% in

this work and the analyses in the literature.

Unless multi-EXOFAST is overestimating the parameter errors, the transit center

times from this work are well modeled by a linear ephemeris with T0 = 2456176.668258 ±

7.7650773×10−5 and P = 1.0914203 ± 1.4432653×10−7, which has χ2
red = 1.09. A

sinusoidal fit to the data using the period corresponding to the highest power peak in the

periodogram (3.996 days), yields an improved fit with χ2
red = 0.66. However, that peak has

an analytical false alarm probability of more than 100%, so my interpretation is that the

improvement is due to a chance fit to noise in the data. Based on the reduced chi-squared

value for the linear ephemeris model and the lack of signals in the periodogram, I find no

convincing evidence for sinusoidal TTVs with a semi-amplitude of more than ∼ 35 s in
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the MORC data or the combined data. This interpretation is consistent with the Steffen et

al. (2012) study that found no evidence of TTVs in the orbits of Kepler hot Jupiter planets

with 1 ≤ P ≤ 5 days. On the other hand, the data are sparsely sampled and it may be

possible that short period, low level, or non-sinusoidal TTV signals are lurking in the data.

In particular, the timing data between epochs 0 and 200 (the 2012-2013 observing season)

seem to show a correlated downward trend. However, the data are too sparse to consider

fitting non-sinusoidal TTV signals.
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CHAPTER 6

QATAR-1b CHARACTERIZATION AND TTV ANALYSIS

6.1 Introduction

Qatar-1b is a hot Jupiter exoplanet and is the first planet discovered by the Qatar

Exoplanet Survey (see §1.6.1). The planet was announced by Alsubai et al. 2011 (A11).

The host star is a V ∼ 12.8 metal-rich K-dwarf star, and the planet has a circular orbital

with period P = 1.42 d, a semi-major axis of∼ 6 stellar radii, a mass MP = 1.09 MJ and a

radius RP = 1.2 RJ.

The short orbital period of Qatar-1b results in relatively frequent opportunities to

observe complete transit events from the ground, which has prompted a number of other

groups to conduct detailed studies of the system. Covino et al. 2013 (C13) obtained

HARPS-N in-transit high-precision radial velocities to measure the RM effect in the

Qatar-1b system, and out-of-transit measurements to redetermine the spectroscopic orbit.

They found that the orbit is consistent with circular and has a well-aligned spin-orbit angle

of λ = −8.4±7.1◦. von Essen, Schröter, Agol, & Schmitt 2013 (E13) presented a detailed

TTV analysis of 26 Qatar-1b transits covering a baseline of 18 months and found evidence

for a 190 or 380 day TTV signal with semi-amplitude ∼ 1 min that could be reproduced

by either a weak perturber in resonance with Qatar-1b, or by a massive body in the brown

dwarf regime. Mislis et al. 2015 (DM15) analyzed 12 complete Qatar-1b transits and

provided updated system parameters. After reviewing all TTV data available, DM15

suggest further and more precise data to determine if TTVs exist in the system. Croll et al.

(2015) presented near-infrared secondary eclipse observations of Qatar-1b thermal

emission showing a mid-eclipse time consistent with a circular orbit. Maciejewski et al.
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2015 (GM15) analyzed 18 Qatar-1b transits to redetermine system parameters and found

no evidence of periodic TTV’s & 1 min.

In this chapter I present 18 new high-precision transits of Qatar-1b. I discuss the

observations in §6.2, data reduction in §6.3, global fitting in §6.4, system parameter

results in §6.5, and TTV results in §6.6.

6.2 Observations

I observed 18 complete high-precision transits of Qatar-1b with the MORC

telescope over the time span of June 2011 to September 2014. The date, exposure time,

number of exposures, filter, photometric precision, and the error scaling factor (as

determined by multi-EXOFAST; see §6.4) of each time-series of observations are listed in

Table 5. All observations were guided from the science images and were defocused to

improve photometric precision as discussed in sections 2 and 3. We carefully

synchronized our timing source and converted to BJDTDB as discussed in §3.5.5. All

exposures times were 100 s, resulting in a ∼ 2 minute cadence. The first seven transits

were observed with no filter (i.e. open) and the remaining 11 transits were observed in the

Astrodon CBB filter (see §3.3). All transit observations include coverage of pre-ingress

baseline, ingress, flat bottom, egress, and post-egress baseline. A few of the transits have

short gaps due to passing clouds or equipment problems, including the UT 2014-07-23

transit which has no coverage of the time of fourth contact, but has good post transit

baseline.

6.3 Data Reduction

All images were calibrated as discussed in §2 using the AIJ Data Processor

module. Calibration included bias subtraction, CCD linearity correction, dark subtraction,

and flat-field division. Differential photometry was performed using the AIJ

Multi-Aperture module. A superset of 15 comparison stars were selected, ensuring that
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TABLE 5
Summary of Qatar-1b Photometric Observations

Telescope UT Date Filter # Data ExpT2 RMS3 Scale4

MORC1 2011-06-30 Open 109 100 1.2 1.49
MORC 2011-07-10 Open 120 100 1.3 1.47
MORC 2011-08-16 Open 101 100 1.4 1.49
MORC 2011-08-23 Open 116 100 1.1 1.30
MORC 2011-09-22 Open 86 100 1.1 1.42
MORC 2011-10-09 Open 83 100 1.1 1.22
MORC 2011-12-02 Open 92 100 1.3 1.25
MORC 2012-06-19 CBB 115 100 1.3 1.38
MORC 2012-06-29 CBB 163 100 1.3 1.31
MORC 2012-08-02 CBB 138 100 1.6 1.37
MORC 2012-08-12 CBB 110 100 1.5 1.53
MORC 2012-08-22 CBB 145 100 1.4 1.40
MORC 2012-10-25 CBB 97 100 1.4 1.43
MORC 2013-07-16 CBB 168 100 1.2 1.18
MORC 2014-07-16 CBB 175 100 1.5 1.34
MORC 2014-07-23 CBB 164 100 1.6 1.32
MORC 2014-08-19 CBB 139 100 1.7 1.25
MORC 2014-09-25 CBB 162 100 1.6 1.44

1 MORC=U. of Louisville Moore Obs. 0.6 m RCOS telescope
2 Exposure time in seconds
3 RMS in units of 10−3

4 Error scaling factor as determined by multi-EXOFAST
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each one had brightness similar to Qatar-1 and no nearby stars that might blend into the

aperture. The AIJ Multi-Plot and light curve fitting modules were used to search the

superset of comparison stars for a subset that minimized the best fit transit model residuals

for each time-series . The final comparison ensembles were different for each time-series

due to differing filters and sky transparencies, but each ensemble typically had 6 − 10

comparison stars. A range of fixed and variable aperture sizes were investigated to find the

optimal configuration that minimized transit model residuals for each dataset. The result

was a variable aperture radius with a scaling factor of 1.1×FWHM.

The 18 individual detrended and fitted light curves are shown as black dots in

Figure 41. The red lines show the global fit model from section 6.4. The black dots in

Figure 42 show the results after phasing (using the global fit T0 and P from Table 6),

combining, and binning all of the Qatar-1b light curves in 5 minute intervals. The light

curve model is also binned at 5 minute intervals and shown as a red line. This light curve

is not used for analysis, but rather to show the best combined behavior of the transit. The

model residuals are shown in the bottom panel and have an RMS of 255 ppm over the

region where many light curves have been combined (i.e. from −1.5 to 2.5 hrs). Each light

curve is shifted on the y-axis for clarity.

6.4 Global Fit

Multi-EXOFAST (see §4.3) was used to perform a global fit to all 18 Qatar-1b

light curves. As discussed in section §2.9, seven detrend datasets are included with each

light curve to simultaneously detrend the light curves as part of the global fit. The detrend

datasets are airmass, time, sky background, FWHM of the average PSF in each image,

total comparison star counts, and target x-centroid and y-centroid positions on the

detector. The global fit also included TRES RV data from A11 and HARPS-N RV and

RM data and spectroscopic priors of Teff = 4910±100 K, [Fe/H] = 0.2±0.1, and

vsin i⋆ = 1700±300 m s−1 from C13. A spectroscopic prior was not imposed on logg⋆,

since the value derived exclusively from the light curves should be more accurate than the
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Figure 41. All 18 Qatar-1b light curves. Each light curve is detrended and fitted as dis-
cussed in §6.4. The exposure time for each data point is 100 s. The black points are the
normalized and detrended differential photometric measurements, while the red lines show
the global transit model. Each light curve is shifted on the y-axis for clarity.
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Figure 42. All 18 Qatar-1b detrended light curves combined and binned in 5 min intervals
(black dots). The light curves are combined by phasing the data using the global T0 and
P from Table 6. The light curve model is also binned at 5 minute intervals and shown as
a red line. This light curve is not used for analysis, but rather to show the best combined
behavior of the transit. The model residuals are shown in the bottom panel. In the region
where many transits are combined (i.e. from −1.5 to 2.5 hrs), the RMS of the 5 minute
binned model residuals is 255 ppm.
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spectroscopic value (e.g. Mortier et al. 2013, 2014). Based on an initial best fit,

multi-EXOFAST scales the RV and photometric errors to target a reduced chi-squared of

χ2
red = 1.0 for the global fit. As a result, the C13 RV errors were scaled by 1.93 and the

A11 RV errors were scaled by 1.59. The photometric scaling factors are listed in Table 5

and range from 1.18 to 1.53. The orbital eccentricity was fixed to zero since secondary

eclipse and RV observations are consistent with a circular orbit as discussed in §6.1. The

phased RVs are shown in Figure 43 and a close-up of the in-transit RM data is shown in

Figure 44. The HARPS-N RVs and RMs from C13 are shown as black dots and green

squares, respectively. The TRES RVs from A11 are shown as blue triangles. The RM and

RV models from the global fit are shown as red lines.

The Demarque et al. (2004) stellar models were used to estimate M∗ and R∗ from

Teff, logg⋆, and [Fe/H] at each MCMC step. Separate TTV parameters were fit for each

light curve, but common RP/R∗, a/R∗, and i parameters were fit globally to all light

curves. Common sets of quadratic limb darkening parameters, u1λ and u2λ, were

determined for each filter band from the models of Claret & Bloemen (2011) using Teff,

logg⋆, and [Fe/H] at each MCMC step. The publicly available Claret & Bloemen (2011)

limb darkening tables that are included in multi-EXOFAST do not contain coefficients for

the CBB or Open (i.e. the U16M CCD QE curve) bands. At my request, A. Claret

computed them from the Claret & Bloemen (2011) models. The nominal CBB and Open

band coefficient values for a star with spectroscopic parameters like Qatar-1 turn out to be

within 0.02 of the coefficients for the R and Kepler bands, respectively, which are already

included in multi-EXOFAST. The difference in the coefficients is negligible for our

ground-based data, so I used the R and Kepler band coefficients for the global fit.

6.5 System Parameter Results

In addition to the original Qatar-1b system analysis by A11, multi-light curve

analyses have been performed by C13, E13, DM15, and GM15. The follow-up analyses

use various tools to fit the transit data and determine parameter errors, and they use
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Figure 44. Qatar-1b RM data and model. The HARPS-N RMs from C13 are shown as
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bottom panel shows the model residuals.
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differing methods to constrain M∗ and R∗, but none self-consistently perform a global

system analysis based on the RV data, spectroscopy, light curves, and stellar models.

The system parameter values and uncertainties from a self-consistent global fit to

two RV datasets, 18 MORC light curves, spectroscopic Teff, [Fe/H], and vsin i⋆, the

Demarque et al. (2004) stellar models, and the Claret & Bloemen (2011) stellar limb

darkening models are shown in Table 6, and a comparison to values from the literature is

shown in Table 7. Since E13 only reported values determined exclusively from the transit

model fit, physical parameter values are not listed in column E13 of the table.

The stellar parameters, M∗, R∗, logg⋆, and ρ∗ from this work agree with values

from all five literature sources to well within 1σ. C13 revised the RV semi-amplitude

upward based on new HARPS-N velocities, which resulted in an increase in planet mass.

Since I include the new RVs in this global fit, my planetary parameters are best compared

to the literature values starting with C13. They all agree to within 1σ and are almost

identical to the DM15 results, except my Teq is higher by about 1σ. The orbital and transit

parameters agree within 1σ, except RP/R∗ from C13 and E13 differ from all others by

more than 3σ and i from E13 is high by 2σ.

In summary, the parameters from this work agree well with the literature values,

except for the few outliers mentioned in the previous paragraph.
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TABLE 6

Median Values and 68% Confidence Intervals for the Physical and Orbital Parameters of
the Qatar-1b System from the Global Fit Described in §6.4.

Parameter Units Value
Stellar Parameters:

M∗ . . . . . . . . . . . . Mass (M⊙) . . . . . . . . . . . . . . . . . . . . . . . . . . 0.838+0.043
−0.041

R∗ . . . . . . . . . . . . . Radius (R⊙) . . . . . . . . . . . . . . . . . . . . . . . . . 0.803±0.016
L∗ . . . . . . . . . . . . . Luminosity (L⊙) . . . . . . . . . . . . . . . . . . . . . 0.365+0.040

−0.034
ρ∗ . . . . . . . . . . . . . Density (cgs) . . . . . . . . . . . . . . . . . . . . . . . . . 2.286+0.074

−0.070
logg∗ . . . . . . . . . . Surface gravity (cgs) . . . . . . . . . . . . . . . . . . 4.552+0.012

−0.011
Teff . . . . . . . . . . . . Effective temperature (K) . . . . . . . . . . . . . . 5013+93

−88
[Fe/H] . . . . . . . . Metallicity . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.171+0.097

−0.094
vsin I∗ . . . . . . . . . Rotational velocity (m/s) . . . . . . . . . . . . . . 1760±210
λ . . . . . . . . . . . . . . Spin-orbit alignment (degrees) . . . . . . . . . −7.5+7.5

−7.6
Planetary Parameters:

a . . . . . . . . . . . . . . Semi-major axis (AU) . . . . . . . . . . . . . . . . . 0.02332+0.00040
−0.00038

MP . . . . . . . . . . . . Mass (MJ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.294+0.052
−0.049

RP . . . . . . . . . . . . . Radius (RJ) . . . . . . . . . . . . . . . . . . . . . . . . . . 1.143+0.026
−0.025

ρP . . . . . . . . . . . . . Density (cgs) . . . . . . . . . . . . . . . . . . . . . . . . . 1.076+0.057
−0.053

loggP . . . . . . . . . . Surface gravity . . . . . . . . . . . . . . . . . . . . . . . 3.390±0.015
Teq . . . . . . . . . . . . Equilibrium temperature (K) . . . . . . . . . . . 1418+28

−27
Θ . . . . . . . . . . . . . Safronov number . . . . . . . . . . . . . . . . . . . . . 0.0629±0.0019
⟨F⟩ . . . . . . . . . . . . Incident flux (109 erg s−1 cm−2) . . . . . . . . 0.918+0.075

−0.069
Primary Transit Parameters:

T0 . . . . . . . . . . . . . Linear ephemeris from transits (BJDTDB) 2456234.103218±6.0708415×10−5

P . . . . . . . . . . . . . . Linear eph. period from transits (days) . . 1.4200242±2.1728848×10−7

RP/R∗ . . . . . . . . . Radius of the planet in stellar radii . . . . . 0.14629+0.00063
−0.00064

a/R∗ . . . . . . . . . . Semi-major axis in stellar radii . . . . . . . . . 6.247+0.067
−0.065

i . . . . . . . . . . . . . . Inclination (degrees) . . . . . . . . . . . . . . . . . . 84.08+0.16
−0.15

b . . . . . . . . . . . . . . Impact parameter . . . . . . . . . . . . . . . . . . . . . 0.645+0.010
−0.011

δ . . . . . . . . . . . . . . Transit depth . . . . . . . . . . . . . . . . . . . . . . . . . 0.02140±0.00019
TFWHM . . . . . . . . . FWHM duration (days) . . . . . . . . . . . . . . . 0.05498±0.00020
τ . . . . . . . . . . . . . . Ingress/egress duration (days) . . . . . . . . . . 0.01423+0.00039

−0.00038
T14 . . . . . . . . . . . . Total duration (days) . . . . . . . . . . . . . . . . . . 0.06921±0.00033
PT . . . . . . . . . . . . . A priori non-grazing transit probability . 0.1367+0.0013

−0.0014
PT,G . . . . . . . . . . . A priori transit probability . . . . . . . . . . . . . 0.1835±0.0020

Secondary Eclipse Parameter:
TS . . . . . . . . . . . . . Time of eclipse (BJDTDB) . . . . . . . . . . . . . 2456233.3931±0.0021

RV Parameters:
K . . . . . . . . . . . . . RV semi-amplitude (m/s) . . . . . . . . . . . . . . 261.6±5.5
e . . . . . . . . . . . . . . RV eccentricity . . . . . . . . . . . . . . . . . . . . . . . 0.0 (FIXED)
KRM . . . . . . . . . . . RM amplitude (m/s) . . . . . . . . . . . . . . . . . . 38.5±4.6
MP sin i . . . . . . . . Minimum mass (MJ) . . . . . . . . . . . . . . . . . . 1.287+0.052

−0.048
MP/M∗ . . . . . . . . Mass ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.001474±0.000039
γHARPS . . . . . . . . . m/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50.5+6.0

−6.1
γHARPSrm . . . . . . . m/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −59.6±2.0
γT RES . . . . . . . . . . m/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118±16
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6.6 TTV Results

The global system model includes a TTV parameter for each of the 18 light curves,

allowing the transit center time at each epoch to differ from the linear ephemeris. The

resulting TTV values are listed in Table 8 and a linear plot of TTV vs. epoch is shown in

the top panel of Figure 45. The TTVs have a maximum absolute value of 47 s,

RMS= 23.32 s, and χ2
red = 1.08, with respect to the linear ephemeris. The mean of the

timing uncertainty is 22 s. The top panel of Figure 46 shows the Lomb-Scargle

periodogram of the MORC TTV data. The down-pointing arrows labeled 133 and 267

(epochs) mark the ∼ 190 and ∼ 380 d periods investigated by E13. I find no evidence for

those or any other convincing periodic signals in the MORC TTV data.

GM15 reanalyzed light curves from E13 and C13 and combined the results with 18

new Qatar-1b transits. I re-phase the GM15 transit center times based on the refined

ephemeris from this work (which is nearly identical to the GM15 ephemeris; see Table 7)

and plot the resulting TTVs, along with the TTVs from this work, in the bottom panel of

Figure 45. Clearly the observation and analysis methods described in Chapters 2, 3, and 4

of this work are producing very competitive TTV results. With respect to the linear

ephemeris model, χ2
red = 0.82 for the combined data. It appears that the TTV uncertainties

from GM15 are slightly overestimated, and that the linear model is a good representation

of the combined dataset, unless the uncertainties from this work and GM15 are

significantly overestimated. The bottom panel of Figure 46 shows the combined data

Lomb-Scargle periodogram. The significance of the strongest peak is even less than in the

periodogram of our data alone. I find no support for periodic TTVs with semi-amplitude

greater than ∼ 25 sec in the Qatar-1b system.

6.7 Conclusions

I present the results of a self-consistent global fit to 18 MORC light curves that

have been homogeneously reduced starting from the individual images, two RV datasets,
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TABLE 8

Qatar-1b Transit Times

TC (BJDTDB) Epoch TTV (s) σTTV (s) TTV/σTTV

2455742.774748 -346 -7.41 19 -0.38
2455752.714992 -339 -0.98 21 -0.05
2455789.635401 -313 -20.08 22 -0.88
2455796.735833 -308 6.78 18 0.36
2455826.556175 -287 -7.64 19 -0.39
2455843.596639 -275 7.33 19 0.37
2455897.557680 -237 17.71 21 0.83
2456097.780697 -96 -16.82 20 -0.83
2456107.721518 -89 39.46 18 2.09
2456141.801755 -65 9.69 25 0.38
2456151.741312 -58 -43.24 24 -1.74
2456161.681666 -51 -27.31 23 -1.17
2456225.583358 -6 24.67 23 1.07
2456489.707616 180 3.14 17 0.18
2456854.653255 437 -47.71 27 -1.70
2456861.754168 442 20.71 28 0.74
2456888.734234 461 -13.37 26 -0.51
2456925.655231 487 18.34 22 0.81
Standard Deviation 23.32 −− 1.00
Mean −− 22 −−
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2011 2012 2013 2014

Figure 45. Qatar-1b TTVs vs. transit epoch. The epoch is calculated from the global fit
ephemeris in Table 2. TTV is defined as the observed TC minus TC calculated from the
linear ephemeris (i.e. O −C). MORC data are displayed with blue dots. GM15 derived
data are displayed with red dots. The numbers across the top of the top panel indicate the
approximate calender year. Top Panel: MORC TTVs alone. Bottom Panel: MORC plus
GM15 derived TTVs.
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267

133

FAP=10%

FAP=1%

FAP=10%

FAP=1%

267
133

Figure 46. Lomb-Scargle periodograms for the Qatar-1b TTVs. Analytical FAP levels of
10% and 1% are indicated by the short-dashed and long-dashed lines, respectively. The
down-pointing arrows labeled 133 and 267 epochs mark the ∼ 190 and ∼ 380 d periods
investigated by E13. Top Panel: Periodogram of MORC TTVs alone. Bottom Panel: Peri-
odogram of MORC plus GM15 derived TTVs. I find no evidence for convincing periodic
signals in either periodogram.
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spectroscopic Teff, [Fe/H], and vsin i⋆, the Demarque et al. (2004) stellar models, and the

Claret & Bloemen (2011) stellar limb darkening models. Multi-EXOFAST implements

input data uncertainty scaling and MCMC to robustly determine system parameter

uncertainties. The system parameters derived in this work are consistent with values from

the literature at a level of ∼ 1σ, except for the initial planetary mass underestimate by

A11. The values fall near the mean of the literature values, except Teq from this work is at

the upper end of 1σ relative to the literature values.

Unless multi-EXOFAST is overestimating the parameter errors (which is unlikely

given the error scaling values listed in Table 5), the transit center times are well modeled

by a linear ephemeris with T0 = 2456234.103218 ± 6.0708415×10−5 and P = 1.4200242

± 2.1728848×10−7, which has χ2
red = 1.08. A Lomb-Scargle periodogram shows no

periodic signals in the TTV data that have an analytical false alarm probability less than

100%. Based on the reduced chi-squared value for the linear ephemeris model and the

lack of significant signals in the periodogram, I find no convincing evidence for periodic

TTVs with a semi-amplitude of more than ∼ 25 s in the MORC data. This interpretation is

consistent with the conclusion by MG15 and with the Steffen et al. (2012) study that

found no evidence of TTVs in the orbits of Kepler hot Jupiter planets with 1 ≤ P ≤ 5

days. On the other hand, the data are sparsely sampled and it may be possible that short

period, low level, or non-sinusoidal TTV signals are lurking in the data.
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CHAPTER 7

HD 189733Ab ATMOSPHERIC CHARACTERIZATION

7.1 Introduction

There are a limited but growing number of detections of exoplanet atmospheres

reported in the literature. Transmission spectroscopy (see §1.5.3) of transiting exoplanets

is a key method used to measure atomic and molecular species in atmospheres of

exoplanets, given the technology available today. The best targets for transmission

spectroscopy are exoplanets with bright host stars (V . 10) and with atmospheres that

have a large scale height (i.e. the altitude for which the atmospheric pressure decreases by

a factor of e). Jensen et al. (2011) provide an excellent history of atmospheric detections,

so I will include only a short summary here.

Charbonneau et al. (2002) were the first to detect the atmosphere of an exoplanet.

They detected Na D in the atmosphere of HD 209458b using optical spectroscopy from

the Space Telescope Imaging Spectrograph (STIS) instrument on-board the Hubble Space

Telescope (HST). Shortly thereafter, Vidal-Madjar et al. (2003, 2004) discovered

hydrogen, carbon, and oxygen in the extended upper atmosphere of HD 209458b using

STIS, and Lecavelier Des Etangs et al. (2010) detected hydrogen in the atmosphere of

HD 189733Ab using spectroscopy from the Advanced Camera for Surveys (ACS)

on-board the HST. Redfield et al. (2008) made the first ground-based detection of an

exoplanetary atmosphere using the High-Resolution Spectrograph (HRS) on the

Hobby-Eberly Telescope (HET), detecting Na D in the atmosphere of HD 189733Ab.

Snellen et al. (2008) also confirmed the Charbonneau et al. (2002) detection of Na D in

HD 209458b from the ground using the High Dispersion Spectrograph (HDS) on the
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Subaru telescope. In the near-IR, many molecular species have been detected in the

atmospheres of HD 209458b and HD 189733Ab, but many of these are in dispute (see

Jensen et al. 2011 and references therein for more details).

Clearly, the study of exoplanet atmospheres has been focused on HD 209458b and

HD 189733Ab. Both of these systems are nearby and therefore the apparent brightness of

their host stars provides the highest signal-to-noise levels for transmission spectroscopy.

More recently, detections in systems with less favorable conditions for transmission

spectroscopy have appeared in the literature. Wood et al. (2011) reported sodium in the

atmosphere of WASP-17b using the GIRAFFE spectrograph on the VLT, Colón et al.

(2010) reported the detection of potassium in HD 80606b using photometry in a tunable

narrow-band filter and Sing et al. (2011) reported potassium in XO-2b using the same

tunable filter. Fossati et al. (2010) reported the detection of metals in the extended

atmosphere of WASP-12b using the Cosmic Origins Spectrograph on the HST. Additional

observations of the above systems are ongoing and will hopefully settle the disputed

detections. However, next generation observatories may be required to make significant

improvements in the confidence of currently claimed detections. The KELT survey

(Pepper et al., 2003, 2007) is producing discoveries of new hot Saturn and Jupiter mass

planets with host stars bright enough to expand the number of targets available for

transmission spectroscopy.

7.2 HD 189733Ab Overview

HD 189733Ab is a gas giant planet orbiting a K dwarf star in 2.2 days. The planet

was discovered using the radial velocity method and confirmed to transit its host star,

HD 189733A, by Bouchy et al. (2005). Because of its bright host star and relatively high

value of RP/R∗, HD 189733Ab is one of the two best-studied hot Jupiter exoplanets.

Bakos et al. (2006) show that HD 189733A is the primary of a double star system. The

secondary, HD 189733B, is a mid-M dwarf with a projected separation of 216 AU or

∼ 11′′. Hereafter, the notation HD 189733 refers to the primary star of the system and

148



HD 189733b refers to the exoplanet orbiting the primary star.

Extensive theoretical work has been presented on the atmosphere of HD 189733b

by Seager & Sasselov (2000), Brown (2001), Fortney et al. (2006), Barman (2008),

Burrows et al. (2008), Showman et al. (2008) and others. The models predict strong

atomic absorption lines at 589 nm from sodium (Na D) and 769 nm from potassium (K I),

and several molecular bands due to water, but they can be hidden by broad absorption

from clouds or hazes higher up in the atmosphere. In the near-IR, the models predict

molecular signatures of water, methane, ammonia and carbon monoxide.

Detailed spectroscopic studies of the system have detected several atomic and

molecular components in the atmosphere of HD 189733b. Redfield et al. (2008) first

measured sodium in the exoplanet’s atmosphere using the High Resolution Spectrograph

on the 9.2 m Hobby-Eberly Telescope. They obtained 11 in-transit and 25 out-of-transit

spectroscopic observations over the course of about a year. They found that the in-transit

spectra showed a Na D absorption feature that was stronger by 0.0672±0.0207% when

compared to the out-of-transit spectra. The additional Na D absorption when the planet

and its atmosphere are passing in front of the host star is attributed to sodium in the

atmosphere of the planet. Additional components detected in the planet’s atmosphere

include water (Tinetti et al., 2007), methane (Swain et al., 2008), and hydrogen (Jensen et

al., 2012).

In the remaining sections of this chapter, data are presented that I collected using

the 0.6m MORC telescope in an attempt to detect the atmosphere of HD 189733b using

our small aperture telescope.

7.3 Observing Strategy

7.3.1 Target and Atmospheric Species Selection

HD 189733b has one of the most favorable combinations of host star brightness,

planet-to-star radius ratio, and atmospheric scale height (as predicted by theoretical
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models) of all known transiting exoplanets, resulting in one of the highest signal-to-noise

opportunities for atmospheric detection. Since Na D lines are predicted to be strong in the

optical band by many theoretical atmospheric models, and since Redfield et al. (2008) had

reported, just prior to the beginning of my observing program, a ∼ 3σ detection of Na D in

the atmosphere of HD 189733b, I set as a primary goal to attempt confirmation of the that

measurement.

Redfield et al. (2008) and most other efforts to measure an exoplanet’s atmospheric

components make use of space-based or 10 m class ground-based telescopes. Even using

the most sophisticated instrumentation available today, the detection of components in an

exoplanet’s atmosphere is challenging. Although a few recent measurements from these

high-precision instruments report detections with significance > 3σ, many measurements

of exoplanet atmospheres reported in the literature struggle to reach 3σ significance. Since

10 m class telescope apertures collect 200 − 300× more flux than our 0.6 m telescope

aperture, and since scintillation noise for a 0.6 m telescope is much greater than for a 10 m

class telescope (see §2.11), an alternative method of measuring a planet’s effective radius

at different wavelengths is required to enable atmospheric work from the MORC

telescope.

7.3.2 Na D Measurement Methods and Trade-offs

The high-end echelle spectrographs typically used to detect species in the

atmospheres of exoplanets generally have low (∼ 5 − 10%) overall throughput efficiency

(e.g. HRS at HET, Tull 1998; HDS on Subaru, Noguchi et al. 2002; HIRES at Keck, Vogt

et al. 1994). Seeing dependent slit losses combine to make the overall throughput even

less. To determine the effective planet-to-star radius ratio for a particular absorption line

or continuum region from spectroscopy, the spectrum is integrated over the desired

wavelength band (typical ∼ 1 nm), effectively filtering out all of the other wavelengths in

the spectrum. High-quality narrow-band optical interference filters can perform the same

task and can be constructed to provide a throughput of & 70% with relatively sharp
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cutoffs. The downsides are that the desired integration bands must be known before the

observations take place, and data can be collected in only one band at a time unless

additional components are introduced into the optical path. The price of an echelle

spectrograph can range from $100,000 on the low end to millions of dollars on the high

end, while a quality custom-built ∼ 1 nm FWHM filter can be purchased for ∼ $3000.

Given our limited budget and the potential ∼ 10 − 20× gain in throughput, it was decided

that the narrow-band optical filter approach was the best path for an attempt at an

atmospheric detection with a small telescope. To attempt to recover the remaining factor

of ∼ 10 deficiency in flux, multiple transit observations of HD 189733b were required to

reduced the uncertainty in differential transit depth. To overcome the limitation of

observing in only one filter at a time with the MORC hardware, two filters were alternated

from exposure to exposure between one that covers the Na D doublet and another that

covers a region of stellar continuum. Observing a full transit in one filter, and the next

available full transit in the other filter, etc., would invalidate any atmospheric detection

since transit depths can vary slightly from one epoch to another due to the effects of star

spots on the transit depth.

For ground-based observations, time variable spectral features in the Earth’s

atmosphere contaminate the transmission spectrum being measured. Standard stars must

be observed to determine the effect of the telluric contamination, or for very high

resolution spectroscopy that is capable of detecting RV variations in the data,

cross-correlation with atmospheric models can be used to reduce the telluric (and stellar)

contamination. Echelle spectroscopy is generally capable of observing only one star at a

time, so if a standard star is observed, the telescope must slew between the target star and

a nearby reference star in alternating exposures to obtain the best telluric correction.

However, with narrow-band photometry, there are generally multiple reference stars

available on the detector in each exposure to facilitate the high-precision removal of

atmospheric effects on the photometry. This photometric advantage should partially

compensate for the reduced exposure cadence resulting from the requirement to alternate
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between narrow-band filters with my approach.

7.3.3 Filter Choices and Design

The Na D lines occur at 5889.9510 Å and 5895.9242 Å. The Charbonneau et al.

(2002) and Redfield et al. (2008) measurements were reported as integrations over a 12 Å

bandpass. A filter design was selected for this work to provide a FWHM of 10 Å to

approximate the Redfield et al. (2008) bandpass. Figure 47 shows the Na D filter

transmittance curve, measured with a 2-pixel resolution of 0.08 Å, as a red solid line. The

peak transmission and bandwidth are near the design specifications of 70% and 10 Å. The

residual transmission of about 5% off-band is likely scattered light in the laboratory

instrumentation. The measurement was made through a few mm central region of the

50×50 mm filter. The Na D and other absorption lines shown on the plot by the narrow

blue lines are from the theoretical models of Coelho et al. (2005). HD 189733 has

spectroscopic values of Te f f = 5040±50 K, logg = 4.587±0.015, and

[Fe/H] = −0.03±0.08 (Torres et al., 2008). The closest available model parameter values

of Te f f = 5000 K, logg = 4.5, and [Fe/H] = 0.0 were selected. The line identifications are

from the Rowland atlas (Moore, Minnaert, & Houtgast, 1966).

For the adjacent continuum measurement, a cost effective (< $400) off-the-shelf

Astrodon Red Continuum (RC) bandpass filter was selected which has a center

wavelength near 6450 Å and a FWHM of 50 Å. This filter is centered far enough away

from the Na D lines to avoid cross-contamination with the doublet, but close enough to

give a good continuum reference measurement. Since the RC filter has a width 5× that of

the Na D filter, more time can be allocated to the Na D exposures compared to a scenario

with both filter widths set to 10 Å. Figure 48 shows the RC filter transmittance curve as a

thick red line. Spectra from the theoretical models of Coelho et al. (2005), using the same

parameters as in Figure 47, are shown as thin blue absorption lines. The line

identifications are from the Rowland atlas.
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Figure 47. The transmittance curve (thick red line) as measured in the lab for the custom
designed Na D filter from Custom Scientific. Transmittance was measured with a 2-pixel
resolution of 0.08 Angstrom. The peak transmittance and bandwidth are near the design
specifications of 70% and 10 Å. The Na D and other absorption lines shown on the plot by
the narrow blue lines are from the theoretical models of Coelho et al. (2005). The selected
model parameter values of Te f f = 5000 K, logg = 4.5, and [Fe/H] = 0.0 are representative
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Minnaert, & Houtgast, 1966).
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7.4 Observations

We observed 13 full transits of HD 189733b in alternating Na D and RC filters

from UT2011-07-12 to UT2014-09-30. A summary of all HD 189733b observations is

shown in Table 9.

As previously discussed for MORC broadband filter observations, the general goal

is to extend exposure times as long as possible to maximize the amount of photons

collected by limiting time spent reading data from the detector. But, exposure times must

be limited to avoid saturating the detector, to avoid poor telescope guiding/tracking (since

we guide using the science images), and to ensure good temporal sampling of the light

curve for physical modeling of the system. A secondary goal is to approach ∼ 1.0 mmag

differential photometric precision per exposure which requires & 1×106 net integrated

counts in the target star and comparison ensemble apertures with our detector gain setting

of 1.5 electrons/ADU (see §2).

On-sky MORC test observations of HD 189733b in the Na D and RC filters were

conducted to determine reasonable exposure times. Telescope guiding and temporal

sampling is good for my preferred 100 s exposure time, which results in a ∼ 2 min

cadence including the ∼ 20 s detector read-out time. However, the flux in the Na D filter

reaching the detector, even from the very bright host star, is relatively low compared to our

usual broadband filter observations. HD 189733 produces only ∼ 2.5×105 integrated

counts in the Na D filter in a 100 s exposure. Although it was known that telescope

guiding was good at a 2 min exposure cadence, it was unknown how long exposure times

could be extended while continuing to maintain good guiding from the science images

(since tracking errors can only be corrected once per science exposure), so I decided to

double the known good exposure time to 200 s initially.

After the first three transit observations in 2011, it was clear that guiding still

worked well with 200 s exposures and that temporal sampling was acceptable. However,

light curve scatter was not as low as expected, which resulted in worse precision in the

light curve depth measurements than expected. Since the precision in the depth difference
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TABLE 9
Summary of HD 189733b Photometric Observations

Telescope UT Date # Na Data # RC Data ExpTime Na (s) ExpTime RC (s)
MORC 2011-07-12 28 28 200 40
MORC 2011-08-10 40 40 200 40
MORC 2011-08-30 63 64 200 40
MORC 2012-07-01 33 33 240 100
MORC 2012-07-21 22 23 240 100
MORC 2012-08-30 49 49 240 100
MORC 2012-09-19 34 36 240 100
MORC 2012-10-09 36 37 240 100
MORC 2013-06-21 48 48 240 100
MORC 2014-07-12 49 48 240 100
MORC 2014-07-21 48 49 240 100
MORC 2014-08-01 57 56 240 100
MORC 2014-09-30 52 52 240 100

Notes: MORC=University of Louisville Moore Observatory 0.6 m RCOS Telescope

is dependent on both the Na D and RC light curve depth precisions, and since we have

> 5× the flux in the RC filter than the Na D filter, I decided to extend the RC exposure

time to 100 s in the second year to minimize the uncertainty in the depth of the RC light

curve, while only adding one more minute to the exposure cycle time. At the same time, I

decided to push the Na D exposure time to 240 s to get a small gain in depth precision

with little loss in temporal sampling. These exposure times improved the depth precision,

so I kept the same settings through the end of my observations in 2014.

7.5 Data Reduction

All images were calibrated as discussed in §2 using the AIJ Data Processor

module. Calibration included bias subtraction, CCD linearity correction, dark subtraction,

and flat-field division. The Multi-Aperture (MA) module of AIJ was used to process the

calibrated images to produce differential photometry (see §2.5) and associated

photometric error (see §2.11) for the target star relative to the only two reasonably bright

comparison stars in the 26′×26′ field of view. The comparisons stars, HD 345459 and
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HD 345464, are marked C2 and C3, respectively, in Figures 49 and 50. The total of the

integrated counts from the two comparison stars is within ∼ 15% of the target star

integrated counts in both the Na D and RC filters.

A fixed aperture radius of 19 pixels was selected to ensure that most of the flux

from HD 189733A is included in the measurement, and to ensure that virtually all of the

flux from the faint 11′′ companion is excluded, except in images with very poor seeing.

Figures 51 and 52 show high-contrast images of the field near the target star in the Na D

and RC filters, respectively. The aperture size and placement relative to HD 189733A is

shown by the green circle in both figures. The center of each aperture is placed at the

corresponding star’s centroid location by the AIJ photometer. Since HD 189733B is

readily visible 11′′ to the WSW of the primary in the RC image (marked B in Figure 52), it

is clear that its flux is virtually excluded from the 19 pixel photometric aperture used for

the image sequences in both filters.

The local sky background is subtracted from each pixel within an aperture before

calculating the net integrated counts for the target and comparison stars. The local

background value is determined from the pixel values in an annulus between a radius of

40 and 100 pixels from the centroid of each star. An iterative process excludes pixels with

values more than 2σ from the mean in each iteration, and the mean of the remaining pixels

is used as the local sky background value for all pixels in the photometric aperture.

7.6 Global Fit

To determine the transit depths in the Na D and RC filters, I fit global models to

each of the two sets of 13 light curves using multi-EXOFAST. As discussed in section

§2.9, seven detrend datasets are included with each light curve to simultaneously detrend

the light curves as part of the global fit. The detrend datasets are airmass, time, sky

background, FWHM of the average PSF in each image, total comparison star counts, and

target x-centroid and y-centroid positions on the detector. Multi-EXOFAST requires RV

data and spectroscopic priors as input, in addition to the transit light curve data. For both
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Figure 49. Typical image of the HD 189733 field in the Na D filter. The target star is
marked T1 and the two comparison stars are marked C2 and C3.
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Figure 50. Typical image of the HD 189733 field in the RC filter. The target star is marked
T1 and the two comparison stars are marked C2 and C3.
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Figure 51. Typical image of the field within ∼ 3′ of HD 189733 in the Na D filter. The
target star is marked T1. The companion star, HD 189733B, is not readily visible in the
Na D filter data.

160



Figure 52. Typical image of the field within ∼ 3′ of HD 189733 in the RC filter. The target
star is marked T1. The primary star, HD 189733A, is marked A and the faint companion
star, HD 189733B, is marked B and is clearly visible and resolved in the RC data.
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global fits, I used Te f f = 5040±50 K and [Fe/H] = −0.03±0.08 from Torres et al. (2008)

as spectroscopic priors, P = 2.21857567±1.5×10−7 from Agol et al. (2010) as an orbital

period prior, and ELODIE RVs from Bouchy et al. (2005).

The global fits include constraints on the stellar parameters M⋆ and R⋆ from the

empirical relations of Torres et al. (2010) in order to break the well-known degeneracy

between M⋆ and R⋆ for single-lined spectroscopic eclipsing systems. To ensure the

resulting parameter uncertainties are roughly accurate, multi-EXOFAST scales the RV

and photometric errors to target a reduced chi-squared χ2
red = 1.0 for the global fit.

Kipping (2010) showed that finite integration times may induce morphological

distortions to the transit light curve. These distortions, if uncorrected for, may lead to

erroneous system parameters. The distortions are significant for Kepler long cadence data

(30 minute exposures) and are not expected to be critical for my 240 s Na D exposures.

Nevertheless, since I am attempting to measure a small difference in transit depth, I used

the capability of multi-EXOFAST to interpolate the model fit of the Na D data by a factor

of 3 to ensure a result that could be directly compared to the model derived from the

shorter RC filter exposures.

Since the same physical system produces all of the light curve data,

multi-EXOFAST finds the best fit of each light curve model parameter to all light curves.

For each of the Na D and RC filter global fits, a single parameter for each of the light

curve parameters Rp/R∗, a/R∗, and i, was fit to all 13 light curves. Furthermore, no transit

timing variations were allowed as part of the global fit since observations from the Spitzer

Space Telescope by Agol et al. (2010) provide extremely tight constraints on the transit

timing of HD 189733b. The timing precision is ∼ 3 s and excludes the presence of second

planets above 20% of the mass of Mars in low-order mean-motion resonance at 95%

confidence. A separate baseline flux parameter is individually fit for each light curve.

The only remaining parameters of the seven parameter light curve model are the

quadratic limb darkening coefficients u1 and u2. Multi-EXOFAST groups all light curves

observed in the same filter together and applies a common set of quadratic limb darkening
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coefficients derived from the models of Claret & Bloemen (2011). Multi-EXOFAST uses

tables published as part of Claret & Bloemen (2011) for standard broadband filters. Since

our Na D filter is a custom design and the RC filter is not commonly used for exoplanet

transit observations, there were no coefficients for those filters supported in

multi-EXOFAST . At my request, A. Claret computed the coefficients from the Claret &

Bloemen (2011) models for both filters (private communication, A. Claret, 12/2014), and I

added support for them in multi-EXOFAST .

The 13 detrended and fitted Na D light curves are shown in Figure 53 with the

global Na D light curve model over-plotted on each light curve in red. The 13 detrended

and fitted RC light curves are shown in Figure 54 with the global RC light curve model

over-plotted on each light curve in red.

7.7 Results

The system parameter values from the Na D and RC global fits are listed in Table

10. Of key interest for the detection of Na D in the atmosphere of HD 189733b are the

values of transit depth, δ, from the two global fits. A larger value from the Na D fit implies

a larger planet radius in the Na D filter than in the RC filter. I find

δRC = 0.02531±0.00027 and δNa D = 0.02581±0.00039, resulting in a difference of

δRC − δNa D = −0.00050±0.00047. Na D is detected in the atmosphere of HD 189733b, but

with a significance of only ∼ 1σ. My original calculation showing that I should be able to

reach a 3σ detection for HD 189733b was flawed due to not properly accounting for the

relatively short period of time the disk of the planet is completely inside the disk of the

star, and because the amount of flux in the Na D filter was overestimated.

Figures 55 and 56 show the combined and binned (in 5 min intervals) Na D and RC

light curves, respectively. The light curves were combined by phasing each set of data

using the global Tc and P from Table 10. The light curve model for each filter is also

binned at 5 minute intervals and shown as a red line. These light curves are not used for

analysis, but rather to show the best combined behavior of the transit in each filter. The
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Figure 53. All thirteen HD 189733b Na D filter light curves. Each light curve has been
detrended as discussed in §7.6. The exposure times for each light curve are listed in Table 9.
The black points are the normalized and detrended differential photometric measurements,
while the red lines show the global Na D transit model.
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Figure 54. All thirteen HD 189733b Red Continuum (RC) filter light curves. Each light
curve has been detrended as discussed in §7.6. The exposure times for each light curve are
listed in Table 9. The black points are the normalized and detrended differential photomet-
ric measurements, while the red lines show the global RC transit model.
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model residuals are shown in the bottom panel of each figure.

7.8 Discussion

7.8.1 Results of this Work Compared to the Literature

During the five years of my data collection, additional measurements of Na D in

the atmosphere of HD 189733b have been reported in the literature. Jensen et al. (2011)

reevaluated the Redfield et al. (2008) observations and found Na D absorption in the

atmosphere of HD 189773b at a level of 0.000526±0.000169 (∼ 3σ significance) for a

12 Å bandpass. Huitson et al. (2012) used STIS aboard HST and measured absorption

from the Na D doublet in the atmosphere of HD 189733b at a level of

0.000511±0.000059 (∼ 9σ significance) for a 12 Å bandpass. Given the low 1σ

confidence in my measurement, it is likely a coincidence that the median value of my

measured depth difference is very nearly equal to the two measured values from the

literature.

7.8.2 Detection of Na D in Transit Duration

Transit timing and duration can be determined to high precision for deep transits

such as HD 189733b, because there are many data samples on the steep slopes of the

ingress and egress segments of the light curve. Considering that the HD 189733b light

curve has about the same number of data samples during ingress and egress as in the

"bottom" of the transit, I investigated the possibility of a detectable transit duration

difference due to Na D in the atmosphere of the planet.

Based on the depth difference in the Na D and RC filters, the detected height of the

Na D atmosphere is:

hatm = (Rp)Na − (Rp)RC (24)

hatm = (
√

0.02581 −
√

0.02531)R∗×696342 km/R⊙×0.756R⊙/R∗ ≈ 825 km. (25)
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Figure 55. All thirteen HD 189733b detrended Na D light curves combined and binned in
5 min intervals (black dots). The light curves were combined by phasing the data using
the global Tc and P from Table 10. The Na D light curve model is also binned at 5 minute
intervals and shown as a red line. This light curve is not used for analysis, but rather to
show the best combined behavior of the transit. The model residuals are shown in the
bottom panel.
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Figure 56. All thirteen HD 189733b detrended RC light curves combined and binned in
5 min intervals (black dots). The light curves were combined by phasing the data using
the global Tc and P from Table 10. The RC light curve model is also binned at 5 minute
intervals and shown as a red line. This light curve is not used for analysis, but rather to
show the best combined behavior of the transit. The binned model residuals are shown in
the bottom panel. 167



TABLE 10

Adopted Median Values and 68% Confidence Intervals for the Physical and Orbital Param-
eters of the HD 189733 System from the Global Fits Described in §7.6.

Parameter Units Value (Na D) Value (RC)
Stellar Parameters:

M∗ . . . . . . . . . . . . Mass (M⊙) . . . . . . . . . . 0.818+0.037
−0.036 0.808+0.037

−0.036
R∗ . . . . . . . . . . . . . Radius (R⊙) . . . . . . . . . 0.764±0.012 0.753±0.012
L∗ . . . . . . . . . . . . . Luminosity (L⊙) . . . . . 0.338+0.020

−0.019 0.327+0.019
−0.018

ρ∗ . . . . . . . . . . . . . Density (cgs) . . . . . . . . 2.592+0.034
−0.033 2.672±0.025

logg∗ . . . . . . . . . . Surface gravity (cgs) . 4.5850+0.0071
−0.0072 4.5920+0.0068

−0.0069
Teff . . . . . . . . . . . . Effective temp. (K) . . . 5040±49 5036±49
[Fe/H] . . . . . . . . Metallicity . . . . . . . . . . −0.028±0.079 −0.034+0.078

−0.079
Planetary Parameters:

P . . . . . . . . . . . . . . Period (days) . . . . . . . . 2.21857560±0.00000015 2.21857569±0.00000015
a . . . . . . . . . . . . . . Semi-major axis (AU) 0.03114±0.00047 0.03101+0.00047

−0.00046
MP . . . . . . . . . . . . Mass (MJ) . . . . . . . . . . . 1.117+0.060

−0.058 1.107+0.060
−0.058

RP . . . . . . . . . . . . . Radius (RJ) . . . . . . . . . . 1.193±0.021 1.165±0.019
ρP . . . . . . . . . . . . . Density (cgs) . . . . . . . . 0.815+0.044

−0.042 0.869+0.044
−0.043

loggP . . . . . . . . . . Surface gravity . . . . . . . 3.288+0.020
−0.021 3.306+0.019

−0.020
Teq . . . . . . . . . . . . Equilibrium temp. (K) 1203±12 1196±12
⟨F⟩ . . . . . . . . . . . . (109 erg s−1 cm−2) . . . . 0.476+0.020

−0.019 0.465+0.019
−0.018

RV Parameters:
TC . . . . . . . . . . . . . Inf. conj. (BJDTDB) . . 2455754.78952±0.00022 2455754.78989±0.00016
K . . . . . . . . . . . . . RV semi-amp. (m/s) . . 198.4+8.6

−8.7 198.3±8.7
MP sin i . . . . . . . . Minimum mass (MJ) . 1.113+0.060

−0.058 1.104+0.060
−0.058

MP/M∗ . . . . . . . . Mass ratio . . . . . . . . . . . 0.001304±0.000060 0.001309+0.000061
−0.000060

γELODIE . . . . . . . . m/s . . . . . . . . . . . . . . . . . 3.5±5.3 3.4±5.3
Primary Transit Parameters:

RP/R∗ . . . . . . . . . Planet radius (R∗) . . . . 0.1607±0.0012 0.15910±0.00086
a/R∗ . . . . . . . . . . Semi-major axis (R∗) . 8.771±0.038 8.860±0.028
i . . . . . . . . . . . . . . Inclination (degrees) . . 85.7101±0.0023 85.7100±0.0023
b . . . . . . . . . . . . . . Impact parameter . . . . 0.6561+0.0029

−0.0028 0.6628±0.0021
δ . . . . . . . . . . . . . . Transit depth . . . . . . . . 0.02581+0.00038

−0.00039 0.02531±0.00027
TFWHM . . . . . . . . . FWHM dur. (days) . . . 0.05988+0.00048

−0.00049 0.05877+0.00036
−0.00035

τ . . . . . . . . . . . . . . Ing./egr. dur. (days) . . 0.01759±0.00014 0.017382±0.000099
T14 . . . . . . . . . . . . Total duration (days) . 0.07746±0.00050 0.07615+0.00037

−0.00036
u1Na . . . . . . . . . . . Lin. Limb-darkening . 0.605+0.016

−0.017 0.540+0.016
−0.017

u2Na . . . . . . . . . . . Quad. Limb-darkening 0.156±0.013 0.173±0.013
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The orbital time of the planet is

Porbit = 2.21857567 d×86400 s/d = 191,685 s. (26)

The distance traveled by the planet in one orbit is

dorbit = 0.031 AU×1.496×108 km/AU×2π = 29,138,900 km. (27)

The orbital velocity is then

vorbit = dorbit/Porbit ≈ 150 km/s. (28)

Assuming a circular atmospheric disk and a transit impact parameter of zero, the

atmosphere’s ingress/egress time is

τatm =
hatm

vorbit
=

825 km
150 km/s

= 5.5 s. (29)

Then the total extra transit duration due to the atmosphere is 11 s. However, when the

impact parameter is greater than zero, the atmosphere crosses the disk of the host star at an

angle which increases the atmospheric ingress/egress time. Using the implementation of

the Mandel & Agol (2002) model in AIJ and an impact parameter of b = 0.663, along with

the other parameter values in Table 10, the total extra transit duration due to a circular

atmospheric disk is 14 s.

The global fits show a difference in transit duration of

(TFWHM)Na − (TFWHM)RC = 0.05988±0.00049 d − 0.05877±0.00036 d = 96±53 s (30)

which is nearly a 2σ detection, but is a much larger duration difference than the 14 s

difference calculated for the circular atmospheric disk case. However, Lecavelier Des

Etangs et al. (2010) detected an evaporating atmosphere around HD 189733b. Using the

HST/ACS, they found the transit depth in H I Lyman-α to be on average ∼double the

depth of the 2.4% optical broadband filter depth. If the shape of HD 189733b’s

atmosphere is being affected by the intense stellar radiation incident on the planet’s
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Figure 57. The HD 189733b combined and binned RC filter light curve compared to the
combined and binned Na D filter light curve. The RC and Na D data are shown as red
and black dots, respectively. The RC and Na D models are shown as red and black lines,
respectively. The Na D model is deeper and wider than the RC model.

atmosphere, the transit duration difference measured in this work could be real and

suggestive of a Na atmosphere that is extended along the path the planet takes as it crosses

the face of the star. Figure 57 shows the combined and binned RC filter light curve

compared to the combined and binned Na D filter light curve. The Na D transit model is

deeper and wider than the RC transit model.

The highest precision HD 189733b Na D measurement available is the Huitson et

al. (2012) 9σ detection of Na D from HST/STIS. However, those data are limited to high

precision transit depth measurements, since the 90 minute orbit of HST prevents the

complete observation of full transits. In particular, the HST/STIS observations provided a

pre-ingress baseline sequence, an in-transit sequence, and a post-egress sequence, but no

observations during ingress and egress are available. Thus, no transit duration

measurements are possible from the Huitson et al. (2012) data. Additional HST

observations with good coverage of ingress and egress would be useful to qualify our ∼ 2σ

detection of a transit duration difference due to Na in the atmosphere of HD 189733b.
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7.9 Summary and Conclusions

To my knowledge, I have presented the first tentative detection of the atmosphere

of an exoplanet from a small aperture (<1 m) ground-based telescope. Observations of 13

HD 189733b transits using alternating Na D and RC narrow-band filters have produced a

1σ detection of a transit depth that is deeper in the Na D filter than in the continuum RC

filter by 0.05%. Our nominal excess depth is nearly identical to the value obtained from a

9σ detection using HST/STIS spectroscopy, but that is likely by chance, given the low

significance of my measurement. A few days before this work was finalized, Wyttenbach

et al. (2015) released a preprint reporting that they spectrally resolved the Na D doublet in

the atmosphere of HD 189733b using archival transit data from the HARPS spectrograph.

They measure the excess absorption of each of the Na D lines separately using various

integration bandwidths, and they measure an excess absorption of 0.062±0.008% (7.8σ)

when both lines are included in a 12 Å bandpass, which is comparable to and consistent

with our measurement and others reported herein.

We investigate a new method of detecting a non-circular atmospheric disk by

measuring the transit duration difference in the two narrow-band filters. We find a

duration difference of 96±53 s, which if real suggests a Na atmosphere that is

significantly extended along the orbital path. I am not aware of high-precision HST data

that is currently available to confirm our ∼ 2σ detection of duration difference. HST data

that include observations of ingress and egress should be collected to qualify the detection

of the transit duration difference which suggests an extended, non-symmetric Na

atmosphere around HD 189733b.

The narrow-band filter technique could be extended to larger aperture telescopes to

enable atmospheric component detection from observations of a single transit. Colón et al.

(2010) and Sing et al. (2011) have already used the the Optical System for Imaging and

low Resolution Integrated Spectroscopy (OSIRIS) narrow-band tunable filter on the

10.4-m Gran Telescopio Canarias to detect potassium in HD 80606b and XO-2b,

respectively. However, the tunable filter is only 25-50% as efficient as our Na D filter and
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OSIRIS requires special attention to placement of target and comparison star(s) on the

detector because its bandpass is not uniform across the field of view, with the effective

center wavelength decreasing by 10 nm from the center to the edge of the detector.

With a novel approach, precise observations, and careful data reduction and

modeling, small aperture telescopes can compete with larger ground-based and

space-based telescopes to produce cutting edge scientific results. The same approach

could be extended to larger telescopes to advance our knowledge of exoplanetary

atmospheres.
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CHAPTER 8

KELT-6b DISCOVERY AND CHARACTERIZATION

The contents of this chapter appeared in the February 2014 issue of the

Astronomical Journal (Collins et al., 2014). The authors and affiliations are listed in

Appendix B.

8.1 KELT-6b Abstract

We report the discovery of KELT-6b, a mildly-inflated Saturn-mass planet

transiting a metal-poor host. The initial transit signal was identified in KELT-North survey

data, and the planetary nature of the occulter was established using a combination of

follow-up photometry, high-resolution imaging, high-resolution spectroscopy, and precise

radial velocity measurements. The fiducial model from a global analysis including

constraints from isochrones indicates that the V = 10.38 host star (BD+31 2447) is a

mildly evolved, late-F star with Teff = 6102±43 K, logg⋆ = 4.07+0.04
−0.07 and

[Fe/H] = −0.28±0.04, with an inferred mass M⋆ = 1.09±0.04 M⊙ and radius

R⋆ = 1.58+0.16
−0.09 R⊙. The planetary companion has mass MP = 0.43±0.05 MJ, radius

RP = 1.19+0.13
−0.08 RJ, surface gravity loggP = 2.86+0.06

−0.08, and density ρP = 0.31+0.07
−0.08 g cm−3. The

planet is on an orbit with semimajor axis a = 0.079±0.001AU and eccentricity

e = 0.22+0.12
−0.10, which is roughly consistent with circular, and has ephemeris of

Tc(BJDTDB) = 2456347.79679±0.00036 and P = 7.845631±0.000046 d. Equally

plausible fits that employ empirical constraints on the host star parameters rather than

isochrones yield a larger planet mass and radius by ∼ 4 − 7%. KELT-6b has surface

gravity and incident flux similar to HD 209458b, but orbits a host that is more metal poor

than HD 209458 by ∼ 0.3 dex. Thus, the KELT-6 system offers an opportunity to perform

a comparative measurement of two similar planets in similar environments around stars of

very different metallicities. The precise radial velocity data also reveal an acceleration
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indicative of a longer-period third body in the system, although the companion is not

detected in Keck adaptive optics images.

8.2 Identification of Contributions

The discovery and characterization of KELT-6b required a multi-institutional

collaboration and contributions from several scientists with highly specialized capabilities

and/or access to instrumentation with highly specialized capabilities. In this section, my

contributions to the overall process are identified and delineated from the contributions of

other collaborators. In some cases, many team members contributed to a task for which I

was not directly involved, so I will identify work that I did not perform as being from

collaborators in general to avoid improperly or inadequately acknowledging contributions

within each sub-team.

As lead author, I was responsible for writing all text in this chapter. However,

collaborators provided substantial input, especially in sections related to the observations,

data reductions, and analyses identified below as being performed by collaborators. I

organized all of the photometric follow-up observations and collected the results from the

follow-up team. I observed and reduced all of the datasets identified as being from the

MORC telescope. I analyzed all photometric follow-up data to determine the best

detrending parameters to include in the global fit. I gathered and formatted all of the

datasets required for the global fits. I set up and executed the 12 global fits and analyzed

and formatted the resulting outputs presented in this chapter, including the TTV data. I

performed the secondary transit analysis and participated in deriving the results for most

of the false positive analysis section, and performed the gyrochronological age analysis. I

also created the exoplanetary system parameter comparison figures presented in the

Discussion section, except the Transit Depth vs. Apparent V magnitude figure.

Collaborators provided the KELT-N discovery data, HIRES and TRES radial

velocity and spectroscopic data, follow-up photometry other than from the MORC

telescope, Keck adaptive optics data and associated analyses, UVW space motion

analysis, SED analysis, and insolation evolution analysis. For each of the datasets and/or
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analyses contributed, the responsible sub-team usually provided text suggestions and in

some cases figures that are included in this chapter.

All team members provided valuable contributions during the review and

publication phases.

8.3 Introduction

Ground-based surveys have discovered dozens of transiting exoplanets around

bright (V < 11) stars. Those discoveries are of considerable importance because they

enable cost-effective detailed measurements of physical properties of extrasolar planets

and their host stars (see reviews by Winn 2009, 2010). Discoveries of transiting

exoplanets that have characteristics similar to an already well-measured exoplanet, but

that differ significantly in one aspect, are of particularly high importance because they

enable comparative studies.

The high scientific value of transiting planet systems motivated the first dedicated

wide-field transit surveys, which have now produced a large number of discoveries (TrES,

Alonso et al. 2004; XO, McCullough et al. 2006; HATNet, Bakos et al. 2007; SuperWASP,

Collier Cameron et al. 2007a, QES, Alsubai et al. 2011). SuperWASP and HATNet have

been especially productive, with each survey discovering dozens of new transiting planets.

The space-based missions CoRoT (Baglin, 2003) and Kepler (Borucki et al., 2010) have

dramatically expanded the parameter space of transit surveys, enabling the detection of

transiting planets with sizes down to that of the Earth and below, planets with periods of

several years, and planets orbiting host stars with a wider range of physical characteristics.

The Kilodegree Extremely Little Telescope-North (KELT-North) transit survey

(Pepper et al., 2007) is designed to detect transiting planets around bright stars. Pepper et

al. (2003) designed the aperture, optical system, and exposure time for KELT-North to

provide better than 1% RMS photometry for stars with 8 <V < 10. That magnitude range

represents the brightness gap between comprehensive RV surveys and most other transit

surveys. The KELT-North telescope system was constructed using commercial
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off-the-shelf equipment and has been collecting data since September 2006.

The KELT-North survey has already announced three low-mass transiting

companions. KELT-1b (Siverd et al., 2012) is a highly inflated 27 MJ brown dwarf

transiting a V = 10.7 mid-F star. KELT-2Ab (Beatty et al., 2012) is a hot Jupiter transiting

the bright (V = 8.77) primary star of a binary system. KELT-3b (Pepper et al., 2013) is a

hot Jupiter planet transiting a V = 9.8 late-F star. The designations KELT-4 and KELT-5

are currently reserved for two candidates in the confirmation phase.

Because KELT-North has focused on the same fields for an extended length of time

(> 6 years), longer period (P ≥ 5 d) planets are now detectable in the data. The large

number of observations of each field also enables the detection of smaller planet-to-star

radius ratios. In this paper we describe the discovery and characterization of KELT-6b, a

transiting mildly-inflated Saturn-mass planet orbiting a V = 10.38 metal-poor host BD+31

2447 (hereafter KELT-6). KELT-6b is currently the sixth longest period exoplanet

discovered by a ground-based transit survey, after HAT-P-15b, HAT-P-17b, WASP-8b,

WASP-59b, and WASP-84b1. In several important aspects, KELT-6b resembles a

metal-poor analog of one of the most well-studied transiting planets, HD 209458b

(Charbonneau et al., 2000; Henry et al., 2000). Both hosts have similar effective

temperatures of ∼ 6100 K, although KELT-6 is significantly more evolved and therefore

has a larger radius. On the other hand, KELT-6b has a substantially larger orbit than HD

209458b. As a result, the incident fluxes at both planets are very similar. In addition, the

surface gravity of KELT-6b differs from that of HD 209458b by only ∼ 20%.

The discovery of KELT-6b offers an opportunity to perform a comparative

measurement of two similar planets in similar environments around stars of very different

metallicities. The comparison may, for example, elucidate the effect of bulk composition

of the planet atmosphere on the cause of atmospheric temperature inversions (e.g.,

Madhusudhan & Seager 2010). In addition, host-star metallicity has been shown to affect

1The Exoplanet Orbit Database (Wright et al. 2011; Han et al. 2014; http://exoplanets.org/) lists four
planets with longer periods as of November 5th, 2013. WASP-84b (Anderson et al., 2013) is not in the
database at the time of writing, but we include it here for completeness.
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the physical and orbital properties of planets. In particular, there is a rough correlation

between metallicity and estimated core mass (Burrows et al. 2007; Torres et al. 2008; Sato

et al. 2005), and there are indications of trends in the properties of planets with metallicity,

which may signal the existence of multiple mechanisms for the formation and/or delivery

of close-in giant planets (e.g., Ribas & Miralda-Escudé 2007; Dawson & Murray-Clay

2013).

8.4 Discovery and Follow-up Observations

We provide a brief summary of the KELT survey data reduction process in §8.4.1;

for more details, see §2 of Siverd et al. (2012).

8.4.1 KELT-North Observations and Photometry

KELT-6 is in KELT-North survey field 08, which is centered on (α = 13h38m28s.25,

δ = +31◦41′12.′′67; J2000). We monitored field 08 from December 2006, to June 2011,

collecting a total of 7359 observations. We reduced the raw survey data using a custom

implementation of the ISIS image subtraction package (Alard & Lupton, 1998; Alard,

2000), combined with point-spread fitting photometry using DAOPHOT (Stetson, 1987).

Using proper motions from the Tycho-2 catalog (Høg et al., 2000) and J and H magnitudes

from 2MASS (Skrutskie et al. 2006; Cutri et al. 2003), we implemented a reduced proper

motion cut (Gould & Morgan, 2003) based on the specific implementation of Collier

Cameron et al. (2007b), in order to select likely dwarf and subgiant stars within the field

for further post-processing and analysis. We applied the trend filtering algorithm (TFA;

Kovács et al., 2005) to each remaining light curve to remove systematic noise, followed

by a search for transit signals using the box-fitting least squares algorithm (BLS; Kovács

et al., 2002). For both TFA and BLS we used the versions found in the VARTOOLS

package (Hartman et al., 2008).

One of the candidates from field 08 was star BD+31 2447 / TYC 2532-556-1,

located at (α = 13h03m55s.65, δ = +30◦38′24.′′3; J2000). The star has Tycho magnitudes
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Figure 58. Discovery light curve of KELT-6 from the KELT-North telescope. The light
curve contains 7359 observations spanning 4.5 years, phase-folded to the orbital period of
7.8457 days. The solid red line represents the same data binned at ∼2-hour intervals after
phase-folding.

BT = 10.736±0.048 and VT = 10.294±0.050 (Høg et al., 2000), and passed our initial

selection cuts. The discovery light curve of KELT-6 is shown in Figure 58. We observed a

transit-like feature at a period of 7.8457 days, with a depth of about 5 mmag.

8.4.2 Radial-Velocity Observations

After KELT-6 was selected as a candidate, we conducted radial-velocity (RV)

observations to identify possible false-positive signatures and to determine the RV orbit.

We obtained data using the Tillinghast Reflector Echelle Spectrograph2 (TRES; Fűrész,

2008), on the 1.5m Tillinghast Reflector at the Fred L. Whipple Observatory (FLWO) at

Mt. Hopkins, AZ. We observed KELT-6 three times with TRES over three months, from

UT 2012-04-12 to UT 2012-07-09. The spectra have a resolving power of R=44,000, and

were extracted following the procedures described by Buchhave et al. (2010). These three

initial TRES single-order absolute RVs are listed in Table 11 and are consistent with no

RV variations to within the errors, ruling out some classes of astrophysical false positives.

2http://tdc-www.harvard.edu/instruments/tres/
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However, the TRES RV uncertainties are large enough to still allow for a low-mass

companion at the ∼ 7.8d period of the KELT-North candidate signal, and on that basis we

chose to continue with photometric follow-up. Note that due to the relatively large

uncertainties, we chose not to include these TRES velocities in the final global analysis

described in §8.6.

On UT 2012-06-26, we obtained high precision KELT-6 follow-up photometry of

the final third of a predicted transit and detected an apparent shallow egress (see §8.4.3).

Based on that detection and the lack of RV variations in the TRES data, we decided to

pursue higher-precision RV data.

Using the High Resolution Echelle Spectrometer (HIRES) instrument (Vogt et al.,

1994) on the Keck I telescope located on Mauna Kea, Hawaii, we obtained 16 exposures

between UT 2012-08-24 and UT 2013-02-21 with an iodine cell, plus a single iodine-free

template spectrum. The absolute and precise relative RV measurements are listed in Table

11, and Figure 59 shows the HIRES relative RV data phased to the orbit fit with a linear

trend of γ̇ = −0.239 m s−1 day−1 (see §8.6) removed, along with the residuals to the model

fit.

The HIRES radial velocity observations were made using the standard setup of the

California Planet Search (CPS) program (Johnson et al., 2010; Howard et al., 2011). A

pyrex cell containing gaseous iodine is placed in front of the spectrometer entrance slit,

which imprints a dense set of molecular iodine lines on each stellar spectrum. The iodine

lines provide a calibration of the instrumental profile as well as a precise measure of the

wavelength scale at the time of observation (Marcy & Butler, 1992). We measured the

relative stellar radial velocities using the forward-modeling scheme of Butler et al. (1996)

with improvements made over the years. We measured the absolute RVs using the

methods of Chubak et al. (2012).

The PSF varies quite dramatically in the slit-fed HIRES instrument simply from

guiding and spectrometer focus variations. Since line asymmetries due to instrumental

and stellar sources cannot be easily distinguished, we do not attempt to measure bisector
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spans for the HIRES observations.

We also obtained five RV measurements between UT 2013-02-01 and UT

2013-02-15 using the Hobby-Eberly Telescope (HET). However, these data were taken

without an iodine cell for wavelength reference, and as a result the uncertainties are >6 km

s−1, so we do not list them in the RV table or use them in the global fit analysis in §8.6.

Finally, 21 additional TRES RVs were obtained and reduced using multi-order

analysis after most of the global analysis had been completed. The full TRES RV dataset

is listed in Table 11 and contains measurements from 24 different nights between UT

2012-04-12 and UT 2013-07-31, with typical relative uncertainties of 20 m s−1. Although

we do not use the TRES RV data in our global fit analysis (see §8.6.2), we note that these

data independently confirm both the amplitude of the KELT-6b RV variations (see Figure

59) and the linear trend of the fiducial global fit (see §8.7), albeit with larger uncertainties

due to the somewhat worse precision than the Keck data. Bisector spans were calculated

from the TRES spectra following Torres et al. (2007) and are used in §8.8 as part of the

false positive analysis. The bisector spans are listed in Table 11, and shown in the bottom

panel of Figure 59 phased to the orbital fit.

8.4.3 Follow-up Time-Series Photometry

We acquired follow-up time-series photometry of KELT-6 to check for other types

of false positives and to better determine the transit shape. To schedule follow-up

photometry, we used the Tapir software package (Jensen, 2013). We obtained 16 partial

or full primary transits in multiple bands between June 2012 and June 2013. The transit

duration (> 5.5 hours) and orbital period (> 7.8 days) are long, so opportunities to

observe full transits are rare. Figure 60 shows all the primary transit follow-up light
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TABLE 11
Radial Velocity and Bisector Span Variation Measurements of KELT-6

BJDTDB Abs Rel Rel BSd σBS
e Source

RVa RVb σRV
c

2456029.869867 1085 27.02 20.27 -3.9 21.6 TRES
2456114.681684 1188 -5.96 28.33 -18.0 19.0 TRES
2456117.673406 1166 63.43 19.73 17.3 14.4 TRES
2456163.733467 1300 19.38 3.90 - - HIRES
2456164.729771 1216 61.75 3.76 - - HIRES
2456165.727060 1202 46.70 3.76 - - HIRES
2456172.720200 1209 64.03 3.36 - - HIRES
2456173.720971 1163 69.62 3.31 - - HIRES
2456175.727980 1081 -5.05 5.06 - - HIRES
2456177.719323 1161 -14.71 3.56 - - HIRES
2456178.716548 1000 2.82 3.57 - - HIRES
2456179.715151 1214 43.05 3.67 - - HIRES
2456290.173359 1311 29.64 3.81 - - HIRES
2456318.978815 1132 -46.73 3.50 - - HIRES
2456320.088103 1319 -35.17 3.48 - - HIRES
2456326.175000 1185 -62.66 3.50 - - HIRES
2456327.103147 1340 -49.24 3.52 - - HIRES
2456328.106726 1333 -11.70 3.32 - - HIRES
2456345.026477 1291 8.71 3.58 - - HIRES
2456443.707006 1109 -33.79 22.37 7.4 13.4 TRES
2456450.707562 1125 -18.64 19.40 -8.2 15.4 TRES
2456451.710411 1021 -54.28 19.92 -0.2 15.3 TRES
2456452.667049 1022 -79.97 17.75 0.5 10.2 TRES
2456453.661056 1044 16.31 21.20 -50.3 18.9 TRES
2456458.688259 1015 -71.18 18.35 8.5 10.8 TRES
2456459.685632 1147 -54.01 17.19 16.6 11.0 TRES
2456460.684562 1022 -57.04 20.36 6.1 10.1 TRES
2456461.669084 1127 -30.88 18.32 11.8 11.6 TRES
2456462.673881 1181 0.00 14.42 5.2 9.0 TRES
2456463.673604 1150 19.16 15.25 12.8 11.2 TRES
2456464.684882 1141 10.16 14.42 1.9 13.9 TRES
2456466.733703 1045 -69.70 17.79 -18.7 13.2 TRES
2456467.707369 1089 -66.40 24.43 -5.8 11.4 TRES
2456468.720609 1071 -78.93 24.46 -13.3 11.2 TRES
2456469.719214 1080 -36.11 22.32 6.0 10.1 TRES
2456470.658849 1168 34.53 19.41 -4.3 9.8 TRES
2456472.704518 1211 -11.86 25.12 30.9 22.1 TRES
2456501.663546 1628 -20.17 33.33 0.5 12.2 TRES
2456503.653861 1697 58.79 33.22 5.4 11.6 TRES
2456504.645862 1577 -2.35 19.21 -8.3 10.8 TRES

Notes: Absolute RVs are on the IAU scale. The native absolute velocity scale of TRES has been transformed
to the IAU absolute velocity scale by subtracting 610 m s−1. The absolute RV error is 100 m s−1 and is
dominated by the long-term RMS for velocity standard stars. The bisector spans (BS) from the TRES
spectra are computed as described in the text. a absolute RVs (m s−1)
b relative RVs (m s−1) c unrescaled relative RV errors (m s−1) d spectral line bisector spans (m s−1)
e spectral line bisector span errors (m s−1)
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Figure 59. HIRES and TRES relative radial velocity measurements of KELT-6. Top panel:
Relative RV observations phased to our fiducial orbital model (see §8.6.2) which is fit to the
HIRES data only with eccentricity and the RV linear trend as free parameters. The fiducial
model is shown as a solid red line. The predicted Rossiter-McLaughlin effect incorporates
an assumption that λ = 0 (i.e. that the projected spin-obit alignment of the system is 0
degrees). HIRES observations are shown as black squares and the error bars are scaled
according to the method described in §8.6. TRES observations are shown as gray circles
with unrescaled errors. These data were not used in the fit, but are simply phased to the
period of the fiducial model, and shifted by a constant offset that minimizes the χ2 of
the data from the fiducial model. Middle panel: Residuals of the RV observations to the
fiducial fit. The RMS of the HIRES RV residuals is 8.0 m s−1. Bottom panel: Bisector
spans of the TRES spectra.
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curves assembled. A summary of the follow-up photometric observations is shown in

Table 12. We find consistent RP/R⋆ ratios in all light curves, which include observations in

the g, r, i, z, V , I, and CBB filters3, helping to rule out false positives due to blended

eclipsing binaries. Figure 61 shows all primary transit follow-up light curves from Figure

60 (except the WCO light curve which contains significant residual systematics after

detrending), combined and binned in 5 minute intervals. This combined and binned light

curve is not used for analysis, but rather to show the best combined behavior of the transit.

We also observed KELT-6 near the uncertain time of secondary transit on five different

epochs (see §8.8).

Unless otherwise noted, all photometric follow-up observations were reduced with

the AstroImageJ (AIJ) package4 (K. A. Collins & J. F. Kielkopf 2015, in preparation). AIJ

is a general purpose image processing package, but is optimized for processing time-series

astronomical image sequences. It is open source software written in Java and is

compatible with all computing platforms commonly used to process astronomical data.

AIJ is a graphical user interface driven package that provides an interactive multi-image

display interface, CCD image calibration (bias, dark, flat-field, and non-linearity

correction), astronomical time and coordinate calculations, multi-aperture differential

photometry, multi-dataset plotting, and interactive light curve detrending. It can be

operated in combination with any camera control software to reduce data and plot

differential light curves in real time, or can be used in standard mode to post process data.

Also unless otherwise noted, calibration of all photometric follow-up observations

included bias and dark subtraction followed by flat-field correction. Calibration of the

MORC data also included a correction for CCD non-linearity. Differential photometry

was performed on the calibrated images using a circular aperture.

We observed three complete and three partial transits of KELT-6 using two

telescopes at Moore Observatory, operated by the University of Louisville. The 0.6 m

3In all references to SDSS filters in this paper, we use the unprimed notation to denote generic SDSS-like
filters, which in practice are often labeled with the primed notation. CBB denotes the Astrodon clear with
blue block filter which starts transmitting near 500 nm and continues to transmit into the near-infrared.

4http://www.astro.louisville.edu/software/astroimagej/
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Figure 60. Follow-up transit photometry of KELT-6. The red overplotted lines are the
best fit transit model from global fit 6 described in §8.6.2 and summarized in Table 14.
The transit times are shown in Table 16. The labels are as follows: MORC=University
of Louisville Moore Observatory 0.6 m RCOS Telescope; PvdKO=Peter van de Kamp
Observatory 0.6 m RCOS Telescope; SPOT=Spot Observatory 0.6 m RCOS Telescope;
MOCDK=University of Louisville Moore Observatory PlaneWave 0.5 m CDK Tele-
scope; KEPCAM=Keplercam at the Fred Lawrence Whipple Observatory 1.2 m Telescope;
CROW=Canela’s Robotic Observatory 0.3 m LX200 Telescope; MBA=Montgomery Bell
Academy 0.6 m PlaneWave CDK Telescope; WCO=Westminster College Observatory 0.35
m C14 Telescope.
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Figure 61. Top panel: All follow-up light curves from Figure 60 (except the WCO light
curve - see text), combined and binned in 5 minute intervals. This light curve is not used for
analysis, but rather to show the best combined behavior of the transit. The red curve shows
the 15 transit models from global fit 6 described in Table 14 for each of the individual fits
combined and binned in 5 minute intervals the same way as the data, with the model points
connected. Bottom panel: The residuals of the binned light curve from the binned model
in the top panel.
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RCOS telescope with an Apogee U16M 4K × 4K CCD, giving a 26’ × 26’ field of view

and 0.39 arcseconds pixel−1, was used to observe the r egress on UT 2012-06-26, the r

ingress on UT 2012-12-23, the full r transit on UT 2013-02-24, the z egress on UT

2013-03-04, and the full r transit on UT 2013-04-20. The 0.6 m was also used to observe

near the time of secondary transit on UT 2013-04-16 in z. The Planewave Instruments 0.5

m CDK telescope with an Apogee U16M 4K × 4K CCD, giving a 37’ × 37’ field of view

and 0.54 arcseconds pixel−1, was used to observe most of a transit in g on UT 2013-02-24.

The gap in the data is due to a meridian flip.

We observed an egress in g at Swarthmore College’s Peter van de Kamp

Observatory on UT 2013-01-08. The observatory uses a 0.6 m RCOS telescope with an

Apogee U16M 4K × 4K CCD, giving a 26’ × 26’ field of view. Using 2 × 2 binning, it

has 0.76 arcseconds pixel−1.

We observed one partial and two full transits at Spot Observatory. The observatory

uses a 0.6 m RCOS telescope with an SBIG STX 16803 4K × 4K CCD, giving a 26’ ×

26’ field of view and 0.39 arcseconds pixel−1. An ingress in i was observed on UT

2013-02-16, and full transits were observed on UT 2013-02-24 in i and UT 2013-04-20 in

z. We also observed near the time of secondary transit on UT 2013-02-20 in z

We observed an egress in z on UT 2013-02-24 and an ingress in i on UT

2013-06-06 with KeplerCam on the 1.2 m telescope at FLWO. KeplerCam has a single 4K

× 4K Fairchild CCD with 0.366 arcseconds pixel−1, and a field of view of 23.1’ × 23.1’.

We also observed near the time of secondary transit on UT 2013-02-28, UT 2013-04-08,

and UT 2013-04-24 in z.

We observed one full and one partial transit at Montgomery Bell Academy (MBA)

Long Mountain Observatory. The observatory uses a PlaneWave Instruments 0.6 m CDK

telescope with an SBIG STL 11002 4008 × 2672 CCD, giving a 30’ × 20’ field of view

and 0.45 arcseconds pixel−1. A full transit was observed in V on UT 2013-02-24.

However, the resulting light curve had large systematics that we were unable to adequately

remove. Since the same transit epoch was observed by both Moore Observatory

186



telescopes in overlapping filter bands, these data added no new information to the analysis

and was not included in the global fit described in §8.6. An egress in I was observed on

UT 2013-03-04, and observations near the time of secondary transit were collected in z on

UT 2013-02-20.

We observed two partial transits at Canela’s Robotic Observatory (CROW) in

Portugal. The observations were obtained using a 0.3 m LX200 telescope with an SBIG

ST-8XME 1530 × 1020 CCD, giving a 28’ × 19’ field of view and 1.11 arcseconds

pixel−1. An ingress was observed in Ic on UT 2013-02-24, and an ingress was observed in

V on UT 2013-04-28.

We observed a partial transit at Westminster College Observatory (WCO) in

Pennsylvania. The observations were obtained using a Celestron 0.35 m C14 telescope

with an SBIG STL-6303E 3072 × 2048 CCD, giving a 24’ × 16’ field of view and 1.4

arcseconds pixel−1 at 3 x 3 pixel binning. An egress was observed using an Astrodon Clear

with Blue Blocking (CBB) filter on UT 2013-04-28.

We observed near the time of secondary transit on UT 2013-04-08 and UT

2013-04-24 using the 1.0 m telescope at the ELP node of the Las Cumbres Observatory

Global Telescope (LCOGT) network at McDonald observatory in Texas (Brown et al.,

2013). The observations were obtained in the Pan-STARRS-Z band with an SBIG

STX-16803 4096 × 4096 CCD, giving a 15.8’ × 15.8’ field of view and 0.464 arcseconds

pixel−1 (2×2 binning). The ELP data were processed using the pipeline discussed in

Brown et al. (2013).

8.4.4 Adaptive Optics Observations

We obtained adaptive optics (AO) imaging using NIRC2 (instrument PI: Keith

Matthews) at Keck on UT 2012-12-07. The AO imaging places limits on the existence of

nearby eclipsing binaries that could be blended with the primary star KELT-6 at the

resolution of the KELT and follow-up data, thereby causing a false positive planet

detection. In addition, it places limits on any nearby blended source that could contribute
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TABLE 12
Summary of KELT-6 Photometric Observations

Telescope UT # Band Cyclea RMSb PNRc Detrend
Date Obs (sec) (10−3) ( 10−3

minute ) Variables

Primary:
MORC 2012-06-26 87 r 119 1.6 2.3 AM
MORC 2012-12-23 91 r 119 0.8 1.1 AM
PvdKO 2013-01-08 315 g 52 1.7 1.6 AM,PK
SPOT 2013-02-16 104 i 119 1.4 2.0 AM,TM
MOCDK 2013-02-24 131 g 141 1.3 2.0 AM,MF,SK
MORC 2013-02-24 212 r 119 1.0 1.4 AM,FW
SPOT 2013-02-24 278 i 99 1.8 2.3 AM,MF
KEPCAM 2013-02-24 361 z 45 1.6 1.4 AM,SK
CROW 2013-02-24 148 I 142 1.9 2.9 AM,PK,TM
MORC 2013-03-04 95 z 259 1.0 2.1 AM,TM
MBA 2013-03-04 39 I 236 1.5 3.0 AM
MORC 2013-04-20 212 r 119 1.2 1.7 AM
SPOT 2013-04-20 179 z 139 2.0 3.0 AM,TM
CROW 2013-04-28 102 V 135 2.1 3.2 AM,MF
WCO 2013-04-28 114 CBB 105 3.0 4.0 AM,TM
KEPCAM 2013-06-06 441 i 35 1.6 1.2 AM
Secondary:
MBA 2013-02-20 58 z 236 1.5 3.0 AM
SPOT 2013-02-20 47 z 259 1.3 2.7 AM
KEPCAM 2013-02-28 757 z 35 2.0 1.5 AM
KEPCAM 2013-04-08 324 z 45 1.7 1.5 AM,XY
ELP 2013-04-08 162 PS-Z 90 1.9 2.3 AM,XY
MORC 2013-04-16 72 z 259 1.4 2.9 AM
ELP 2013-04-24 204 PS-Z 90 2.5 3.1 AM,XY
KEPCAM 2013-04-24 701 z 35 2.4 1.8 AM

Notes: MORC=University of Louisville Moore Observatory 0.6 m RCOS Telescope; PvdKO=Peter van
de Kamp Observatory 0.6 m RCOS Telescope; SPOT=Spot Observatory 0.6 m RCOS Telescope;
MOCDK=University of Louisville Moore Observatory PlaneWave 0.5 m CDK Telescope; KEP-
CAM=Keplercam at the Fred Lawrence Whipple Observatory 1.2 m Telescope; CROW=Canela’s
Robotic Observatory 0.3 m LX200 Telescope; MBA=Montgomery Bell Academy 0.6 m PlaneWave
CDK Telescope; WCO=Westminster College Observatory 0.35 m C14 Telescope; ELP=McDonald
1.0 m Telescope (Las Cumbres Observatory Global Telescope Network); AM=airmass; PK=peak
count in aperture; TM=time; MF=meridian flip; SK=sky background; FW=average FWHM in im-
age; XY=detector x,y coordinates of target star centroid; PS-Z=Pan-STARRS-Z. a Cycle time in
seconds, calculated as the mean of exposure time plus dead time during periods of back-to-back ex-
posures. b RMS of residuals from the best fit model in units of 10−3 . c Photometric noise rate
in units of 10−3 minute−1, calculated as RMS/

√
Γ, where RMS is the scatter in the light curve residu-

als and Γ is the mean number of cycles (exposure time and dead time) per minute during periods of
back-to-back exposures (adapted from Fulton et al. 2011).
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to the total flux, and thereby result in an underestimate of the transit depth and thus planet

radius in the global fit presented in §8.6. Our observations consist of dithered frames

taken with the K′ filter. We used the narrow camera setting to provide fine spatial

sampling of the stellar point-spread function, and used KELT-6 as its own on-axis natural

guide star. The total on-source integration time was 225 seconds. The resulting image is

shown in Figure 62.

We find no significant detection of off-axis sources in the immediate vicinity of

KELT-6. We note that there are some conspicuous sources at the threshold of detection.

However, without an image in a different filter, we are unable to determine if the position

of these sources are wavelength dependent, which would indicate that they are speckles

rather than real sources. Nevertheless, we can still place a conservative upper limit on any

real sources based on the contrast sensitivity. Figure 63 shows the 10σ contrast sensitivity

(in ∆magnitude) versus angular separation computed from Figure 62 using a three-point

dither pattern to build signal and subtract sky-background (see Crepp et al. 2012). The top

scale in Figure 63 shows projected separation in AU for a distance of 222 pc (see Table

13). The scale on the right side of the plot estimates the mass in units of M⊙ at a given

contrast, estimated using the Baraffe et al. (1998) models. We can exclude companions

beyond a distance of 0.5 arcseconds (111 AU) from KELT-6 down to a magnitude

difference of 6.0 magnitudes at 10σ.

8.5 Host Star Properties

8.5.1 Properties from the Literature

Table 13 lists various properties and measurements of KELT-6 collected from the

literature and derived in this work. The data from the literature include FUV and NUV

fluxes from GALEX (Martin et al., 2005), B −V color from Harris & Upgren (1964),

optical fluxes in the BT and VT passbands from the Tycho-2 catalog (Høg et al., 2000), V

and IC from The Amateur Sky Survey (TASS; Richmond et al. 2000), near-infrared (IR)
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Figure 62. Keck adaptive optics image of KELT-6 taken with NIRC2 in the K’ filter. The
image is displayed on a negative square-root intensity scale to emphasize the surrounding
regions. North is up, and east is left.
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Figure 63. Contrast sensitivity derived from the Keck adaptive optics image of KELT-6
shown in Figure 62. The 10σ contrast in ∆magnitude is plotted against angular separation
in arcseconds. The scale on top shows projected separation in AU for a distance of 222 pc
(see Table 13). The scale on the right side of the plot estimates the mass in units of M⊙
at a given contrast, estimated using the Baraffe et al. (1998) models. We can exclude com-
panions beyond a distance of 0.5 arcseconds (111 AU) from KELT-6 down to a magnitude
difference of 6.0 magnitudes at 10σ.
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fluxes in the J, H and KS passbands from the 2MASS Point Source Catalog (Skrutskie et

al. 2006; Cutri et al. 2003), near- and mid-IR fluxes in three WISE passbands (Wright et

al. 2010; Cutri et al. 2012), and proper motions from the NOMAD catalog (Zacharias et

al., 2004).

8.5.2 Spectroscopic Analysis

We use both the TRES and HIRES spectra to derive the stellar properties of

KELT-6. To analyze the TRES spectra, we use the Spectral Parameter Classification

(SPC) procedure version 2.2 (Buchhave et al., 2012) with Teff, logg⋆, [m/H], and vsin i⋆ as

free parameters. Since each of the 24 TRES spectra yielded similar results, we took the

mean value for each stellar parameter. The uncertainties are dominated by systematic

rather than statistical errors, so we adopt the mean error for each parameter. The results

are: Teff = 6098±50 K, logg⋆ = 3.83±0.10, [m/H] = −0.34±0.08, and

vsin i⋆ = 6.7±0.5 km s−1, giving the star an inferred spectral type of F8.

To analyze the HIRES spectra, we use spectral synthesis modeling with

Spectroscopy Made Easy (SME, Valenti & Piskunov 1996, Valenti & Fischer 2005). The

free parameters for the model included Teff, vsin i⋆, logg⋆, and [Fe/H]. The

microturbulent velocity was fixed to 0.85 kms−1 in this model and the macroturbulent

velocity was specified as a function of effective temperature (Valenti & Fischer, 2005).

After the first model was generated, two other iterations were run with temperature offsets

of ±100 K from the model temperature to evaluate degeneracy between the model

parameters. If the RMS for these new fit parameters relative to the original model values

exceeds the uncertainties on the original model values estimated using the error analysis

of Valenti & Fischer (2005), then these larger uncertainties are adopted. However, in this

case, the fits starting with the temperature offsets settled on values very close to those

found using the original model, differing by much less than the estimated uncertainties on

the original model values. Therefore, we adopted these original uncertainties, which

include systematic error sources as described in Valenti & Fischer (2005). Based on this
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TABLE 13
KELT-6 Stellar Properties

Parameter Description (Units) Value Source Ref.
Names TYC 2532-556-1

BD+31 2447
Weis 32018

αJ2000 13:03:55.647 Tycho-2 1
δJ2000 +30:38:24.26 Tycho-2 1
FUVGALEX 20.328±0.242 GALEX 2
NUVGALEX 14.263±0.190 GALEX 2
BT 10.837±0.049 Tycho-2 1
VT 10.418±0.047 Tycho-2 1
BJ −VJ 0.49±0.008 Harris 3
V 10.337±0.054 TASS 4
IC 9.745±0.061 TASS 4
J 9.302±0.05 2MASS 5
H 9.137±0.05 2MASS 5
KS 9.083±0.05 2MASS 5
WISE1 11.706±0.1 WISE 6
WISE2 12.38±0.1 WISE 6
WISE3 14.311±0.1 WISE 6
µα Proper Motion in RA (mas yr−1) . −6.4±0.7 NOMAD 7
µδ Proper Motion in Dec. (mas yr−1) 15.6±0.7 NOMAD 7
γabs Absolute Systemic RV (km s−1) . . 1.1±0.2 This Papera

. . . . . . . . . . Spectral Type . . . . . . . . . . . . . . . . . . F8±1 This Paper
d Distance (pc) . . . . . . . . . . . . . . . . . . . 222±8 This Paper
. . . . . . . . . . Age (Gyr) . . . . . . . . . . . . . . . . . . . . . . 6.1±0.2 This Paperb

AV Visual Extinction . . . . . . . . . . . . . . . . 0.01±0.02 This Paper
(Uc,V,W ) Galactic Space Velocities (km s−1) (-6.3±0.9, 23.2±0.8, 6.9±0.2) This Paperd

Notes: Magnitudes are on the AB system. Uncertainties for the 2MASS and WISE bands were increased
to 0.05 mag and 0.10 mag, respectively, to account for systematic uncertainties. 1=Høg et al. (2000),
2=Martin et al. (2005), 3=Harris & Upgren (1964), 4=Richmond et al. (2000), 5=Skrutskie et al. (2006);
Cutri et al. (2003), 6=Wright et al. (2010); Cutri et al. (2012), 7=Zacharias et al. (2004).
a The absolute RV uncertainty is due to the systematic uncertainties in the absolute velocities of the RV
standard stars. b The uncertainty does not include possible systematic errors in the adopted evolution-
ary tracks. c We adopt a right-handed coordinate system such that positive U is toward the Galactic
Center. d See §8.5.3
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analysis, KELT-6 appears to be a main sequence or very slightly evolved subgiant with

Teff = 6100±44K, logg⋆ = 3.961±0.060 and sub-solar metallicity, [Fe/H] = −0.277. The

star has a projected rotational velocity vsin i⋆ = 5.0±0.5 km s−1.

Comparing the parameter values determined from the TRES spectra using SPC

v2.2 to those determined from the HIRES spectra using SME, we generally find

agreement to ∼ 1σ or better, except for vsin i⋆, which differs by ∼ 3σ. We do not have a

good explanation for the vsin i⋆ discrepancy. However, we do not use vsin i⋆ in our global

fits, so this discrepancy is unimportant for the present analysis. The individual TRES

spectra have a signal-to-noise ratio (SNR) of ∼ 40 while the HIRES spectrum used to

derive the stellar parameters has a SNR of ∼180. We therefore adopt the higher SNR

HIRES stellar parameters for the analyses in this paper, although we note that the

uncertainties in both determinations are likely to be dominated by systematic errors.

8.5.3 UVW Space Motion

We evaluate the motion of KELT-6 through the Galaxy to place it among standard

stellar populations. We adopt an absolute radial velocity of +1.1±0.2 km s−1, based on

the mean of the TRES and HIRES absolute RVs listed in Table 11, where the uncertainty

is due to the systematic uncertainties in the absolute velocities of the RV standard stars.

Combining the adopted absolute RV with distance estimated from fitting the spectral

energy distribution (§8.5.4) and proper motion information from the NOMAD catalog

(Zacharias et al., 2004), we find that KELT-6 has U,V,W space motion (where positive U

is in the direction of the Galactic Center) of −6.3±0.9, 23.2±0.8, 6.9±0.2, all in units

of km s−1, making it unambiguously a thin disk star.

8.5.4 SED Analysis

We construct an empirical, broad-band spectral energy distribution (SED) of

KELT-6, shown in Figure 64. We use the FUV and NUV fluxes from GALEX (Martin et

al., 2005), the BT and VT colors from the Tycho-2 catalog (Høg et al., 2000), V and IC from
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TASS (Richmond et al., 2000), near-infrared (NIR) fluxes in the J, H, and KS passbands

from the 2MASS Point Source Catalog (Cutri et al., 2003; Skrutskie et al., 2006), and the

near- and mid-IR fluxes in three WISE passbands (Wright et al., 2010). We fit this SED to

NextGen models from Hauschildt et al. (1999) by fixing the values of Teff, logg⋆ and

[Fe/H] inferred from the fiducial model fit to the light curve, RV, and spectroscopic data

as described in §8.6 and listed in Table 15, and then finding the values of the visual

extinction AV and distance d that minimize χ2. The best fit model has a reduced χ2 of 1.61

for 10 degrees of freedom. We find AV = 0.01±0.02 and d = 222±8 pc. We note that the

quoted statistical uncertainties on AV and d are likely to be underestimated because we

have not accounted for the uncertainties in values of Teff, logg⋆ and [Fe/H] used to derive

the model SED. Furthermore, it is likely that alternate model atmospheres would predict

somewhat different SEDs and thus values of the extinction and distance.

8.6 Characterization of the System

To determine the final orbital and physical parameters of the KELT-6 system, we

combine the results from the spectroscopic analysis, the light curves, and the HIRES RVs

of KELT-6 as inputs to a global fit using a custom version of EXOFAST (Eastman et al.,

2013). The TRES RVs are not used in the global fit analysis. The EXOFAST analysis

package does a simultaneous Markov Chain Monte Carlo (MCMC) fit to the photometric

and spectroscopic data to derive system parameters. It includes constraints on the stellar

parameters M⋆ and R⋆ from either the empirical relations in Torres et al. (2010) or from

Yonsei-Yale stellar models (Demarque et al., 2004), in order to break the well-known

degeneracy between M⋆ and R⋆ for single-lined spectroscopic eclipsing systems.

EXOFAST scales the RV and light curve data uncertainties such that the probability that

the χ2 is larger than the value we achieved, P
(
> χ2

)
, is 0.5, to ensure the resulting

parameter uncertainties are roughly accurate. The global fit method is similar to that
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Figure 64. Measured and best-fit SED for KELT-6 from UV through mid-IR. The inter-
section points of the red error bars indicate measurements of the flux of KELT-6 in the
UV, optical, NIR, and mid-IR passbands listed in Table 13. The vertical error bars are the
1σ photometric uncertainties, whereas the horizontal error bars are the effective widths of
the passbands. The solid curve is the best-fit theoretical SED from the NextGen models
of Hauschildt et al. (1999), assuming stellar parameters Teff, logg⋆ and [Fe/H] fixed at the
values in Table 15 from the fiducial fit, with AV and d allowed to vary. The blue dots are
the predicted passband-integrated fluxes of the best-fit theoretical SED corresponding to
our observed photometric bands.
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described in detail in Siverd et al. (2012), but we note a few differences below.5

8.6.1 Light Curve Detrending

Because KELT-6b’s transits have an unusually long duration and relatively shallow

depth (by ground-based observing standards), treatment of light curve systematics plays

an important role in the accuracy of parameters determined by the EXOFAST global fit.

The inclusion of detrending parameters into the global fit can often mitigate the effect of

light curve systematics, but sometimes at the expense of introducing extra local minima in

χ2 space, which may cause other complications in the analysis. Therefore, it is important

to maximize the detrending improvements to the fit of each light curve while minimizing

the number of detrending parameters.

Systematically fitting each light curve using all combinations of ∼15 possible

detrending parameters and comparing all of the resulting χ2 values using the ∆χ2 statistic

would be prohibitive. Instead, we opted to use the interactive detrending capabilities of

the AIJ package (see §8.4.3) to search for up to three parameters that appeared to reduce

the systematics in each light curve. We then individually fit each of the full transit light

curves using EXOFAST, and repeated the fit using various combinations of the detrending

parameters selected for that light curve. Finally, we compared χ2 from before and after the

inclusion of an additional detrending parameter to determine if the probability of a chance

improvement was more than a few percent. If so, we did not include the additional

detrending parameter in the global fit.

It is important to emphasize that the light curves fitted in EXOFAST were the raw

light curves (i.e. not the detrended light curves from AIJ). The only way in which the

results of the AIJ analysis entered into the final analysis was in the choice of detrending

parameters and the initial conditions adopted. Specifically, the detrend parameter

5In the EXOFAST analysis, which includes the modeling of the filter-specific limb darkening parameters
of the transit, we employ the transmission curves defined for the primed SDSS filters rather than the unprimed
versions. We also use the Kepler transmission curve to approximate the CBB filter. We expect any differences
due to those discrepancies to be well below the precision of all our observations in this paper and of the limb
darkening tables from Claret & Bloemen (2011).
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coefficients determined in AIJ were used as starting points for the EXOFAST fits.

However these parameter coefficients were otherwise allowed to vary freely in order to

minimize χ2.

One detrending parameter we included that warrants additional discussion is an

offset in the zero point of the photometry arising from a change in placement of the target

and/or comparison star(s) on the CCD pixel array during time series observations. These

positional changes typically result in a zero point shift in the photometry at that epoch in

the light curve due to interpixel response differences and imperfect flat-field corrections.

We found such positional changes due to a meridian flip in the MOCDK light curve on UT

2013-02-24, as well as an equipment failure in the SPOT UT 2013-02-24 light curve (see

Table 12 and Figure 60). We therefore included a detrending parameter that accounts for a

change in the zero point of the relative photometry before and after the specified time.

In addition, fits to individual partial light curves often resulted in obviously

incorrect models. We therefore chose detrending parameters for such ingress- or

egress-only data by hand using AIJ without a rigorous ∆χ2 analysis.

Light curves from near the time of predicted secondary eclipse were treated

somewhat differently. In particular, these were airmass detrended directly in AIJ, and

when abrupt changes in the light curve were correlated with a change in position of the

target star on the detector, x and y pixel positions of the target star centroid were also used

as detrending parameters.

The final detrending parameters adopted for all of the light curves are shown in

Table 12.

8.6.2 Global Fits

Using the KELT-6b primary transit light curves, the detrending parameters and

priors determined in the previous section, and the results from the HIRES RV and

spectroscopic analyses, we computed a series of 12 global fits using our custom version of

EXOFAST. The results of six illustrative global fits are shown in Table 14. The table lists
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four global fit parameter choices (as detailed in the remainder of this subsection) for each

of the six fits, along with the values of several key system parameters computed as part of

each fit.

All global fits included a prior on orbital period P = 7.8457±0.0002 days from the

KELT-North data and priors on host star effective temperature Teff = 6100±44 K and

metallicity [Fe/H] = −0.277±0.04 from the HIRES spectroscopy. The priors were

implemented as a χ2 penalty in EXOFAST (see Eastman et al. 2013 for details). For some

of the global fits we also included a prior on stellar surface gravity logg⋆ = 3.961±0.060

from the HIRES spectroscopy. For the others, logg⋆ was constrained only by the transit

data through the well-known direct constraint on ρ⋆ from the light curve and RV data,

combined with a constraint on the stellar mass-radius relation through either the Torres

relations or the Yonsei-Yale evolutionary models. Fitting the HIRES RV data

independently to a Keplerian model, we found an acceleration (“RV slope”) of −0.239

m s−1 day−1, which is highly significant at the ∼ 7σ level. Therefore, we proceeded with

RV slope as a free parameter for all global fits.

In addition to the slope, there were four additional choices that had to be

considered when performing the global fit. First, we needed to decide which transits to

include in the global fit. We defined two alternative sets of light curve data to consider: (1)

the 5 “full” transits with both an ingress and egress and (2) all 16 full and partial transits.

Second, as mentioned previously, we had the option to either include a prior on stellar

surface gravity logg⋆ = 3.961±0.060 based on the HIRES spectroscopy, or to fit for

stellar surface gravity without a prior. Third, we had the option to fit the orbital

eccentricity and argument of periastron as free parameters or fix them to zero to force a

circular orbit. Fourth, we had the option to break the degeneracy between M⋆ and R⋆ by

imposing external constraints either from the relations of Torres et al. (2010) (Torres

constraints) or by imposing constraints from the Yonsei-Yale stellar models (Demarque et

al., 2004) (Yonsei-Yale constraints).

We first computed the four combinations of global fits using the 5 full transits with
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the Torres constraints. The four global fits are defined by the different combinations of

eccentric vs. circular orbits, and logg⋆ with a spectroscopic prior vs. logg⋆ free. The

column labeled “Fit 5” in Table 14 shows the results for the Torres constrained, eccentric

global fit, with no logg⋆ prior. As discussed in §8.9.1, we plotted Yonsei-Yale stellar

evolution tracks corresponding to the stellar mass and metallicity results from these global

fits and found that the intersection of logg⋆ and Teff values from EXOFAST did not fall

within 1σ of the evolutionary tracks. We then computed the four combinations of global

fits using the 5 full transits with the Yonsei-Yale constraints and found that for these fits

the resulting logg⋆ and Teff values were consistent with the corresponding Yonsei-Yale

stellar evolution tracks within 1σ error. Parameter values from these four fits are listed in

the columns of Table 14 labeled “Fit 1”, “Fit 2”, “Fit 3”, and “Fit 4”. The Torres

constrained planet mass and radius are larger than the Yonsei-Yale constrained mass and

radius by ∼ 4 − 7%, and although we cannot determine if the Torres relations or the

Yonsei-Yale models best represent low metallicity systems, we prefer the Yonsei-Yale

constrained global fits for self-consistency with the stellar evolution tracks in §8.9.1.

We next considered the 16 full and partial transit global fits. We computed only the

four combinations corresponding to the adopted Yonsei-Yale constrained global fits.

Although we computed very long Markov chains with 106 links, three of the four global

fits resulted in some parameters (mostly detrending parameters corresponding to partial

light curves) that did not fully converge. Converged parameters have greater than 1000

independent draws and a Gelman-Rubin statistic less than 1.01 (see Eastman et al. 2013

and Ford 2006). The column labeled “Fit 6” in Table 14 lists the results for the

Yonsei-Yale constrained, eccentric global fit, with no logg⋆ prior. The system parameters

resulting from the 16 transit global fits are nearly identical to the parameters from the 5

transit global fits. This is to be expected since detrended partial light curves will not add

significant constraints to transit depth and shape when jointly fit with full transits. Given

the partial transit minor convergence issues, concerns about the ability to properly remove

systematics from these light curves, and the lack of significant additional constraints on

200



transit depth and shape from the partial transits, we adopted the global fits based on the 5

full transits. We did however use the 16 transit global fits for the transit timing analysis in

§8.6.3.

Next we examined the adopted Yonsei-Yale constrained global fits that use only the

5 full transits. These four global fits are defined by the different combinations of eccentric

vs. circular orbits, and logg⋆ prior vs. logg⋆ free. Since it is typically difficult to measure

logg⋆ to the same precision spectroscopically that can be measured from a transit, we

choose not to impose a prior on logg⋆ from the HIRES spectroscopy. However, we are

wary of measurements of logg⋆ from the transits in this case, since the duration is very

long for a ground-based transit observation. Comparing parameter values in column “Fit

4” of Table 14 with column “Fit 1”, and comparing column “Fit 2” with column “Fit 3”,

we found that imposing a spectroscopic prior on logg⋆ increased the stellar and planetary

radii by ∼ 3% in the circular case and by ∼7% in the eccentric case. However, all of the

system parameters are within ∼ 1σ of the results from the global fits without a prior on

logg⋆.

Since we had no strong prior expectation of tidal circularization of KELT-6b’s

relatively long ∼ 8 day orbit, we adopted the more conservative eccentric orbit global fits

which have higher parameter errors. The eccentricity resulting from a fit without a

spectroscopic prior on logg⋆ is e = 0.22+0.12
−0.10. The eccentricity resulting from a fit with the

HIRES spectroscopic prior on logg⋆ is e = 0.27+0.11
−0.12. As pointed out by Lucy & Sweeney

(1971), there is a bias for inferred values of eccentricity with low significance, due to the

fact that e is a positive definite quantity. Although we adopt an eccentric orbit global fit,

we cannot exclude the hypothesis that the orbit of KELT-6b is, in fact, circular.

Our final adopted fiducial stellar and planetary parameters were derived from the 5

full transit, Yonsei-Yale constrained, eccentric orbit global fit with no prior on logg⋆.

Table 15 lists the full set of system parameters for the fiducial fit.
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Comparing the fiducial system parameters with those from the other 11 global fits,

we note differences in planetary mass ∆MP ∼ 10% (∼ 1σ), planetary radius ∆RP ∼ 10%

(∼ 1σ), orbital radius ∆a ∼ 5% (∼ 4σ), planetary equivalent temperature ∆Teq ∼ 5%

(∼ 1σ), stellar mass ∆M⋆ ∼ 15% (∼ 3σ), and stellar radius ∆R⋆ ∼ 15% (∼ 1.5σ). Clearly,

the choice of global fit input parameters, priors, and external constraints, significantly

affects some of the inferred system parameters. Thus, it is important to note that other

plausible global fits yield significantly different values for some system parameters.

The HIRES RV uncertainty scaling for the fiducial global fit is 2.808, which is

fairly high and is suggestive of substantial stellar jitter in the RV data. The RMS of the RV

residuals of the fit to these scaled data is 8.0 m s−1, which is somewhat high (∼ 2σ)

compared to what we would expect based on Wright (2005). We do not have a compelling

explanation for the high RV residuals. As noted in §8.4.2, we did not attempt to measure

line bisectors for the HIRES data.

8.6.3 Transit Timing Variations

We investigated the transit center times of the 16 full and partial transits adopted

from the 16 transit, Yonsei-Yale constrained, eccentric orbit global fit with no prior on

logg⋆ for any signs of transit time variations (TTVs). We were careful to ensure that all

quoted times had been properly reported in BJDTDB (e.g., Eastman et al. 2010). When we

performed the global fit, we allowed for transit time TC,i for each of the transits shown in

Table 16 to be a free parameter. Therefore, the individual follow-up transit light curves do

not constrain the KELT-6b ephemeris (global epoch TC and period P). Rather, the

constraints on these parameters in the global fit come only from the RV data, and the prior

imposed from the KELT discovery data. Using the follow-up transit light curves to

constrain the ephemeris in the global fit would artificially reduce any observed TTV

signal.

Subsequent to the global fit, we then derived a separate ephemeris from only the

transit timing data by fitting a straight line to all inferred transit center times from the
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TABLE 15

Adopted Median Values and 68% Confidence Intervals for the Physical and Orbital Param-
eters of the KELT-6 System from the Fiducial Global Fit Described in §8.6.2.

Parameter Units Value (adopted)
Stellar Parameters:

M⋆ . . . . . . . . . . . . Mass (M⊙) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.085+0.043
−0.040

R⋆ . . . . . . . . . . . . . Radius (R⊙) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.580+0.16
−0.094

L⋆ . . . . . . . . . . . . . Luminosity (L⊙) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.11+0.68
−0.39

ρ⋆ . . . . . . . . . . . . . Density (cgs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.387+0.068
−0.088

logg⋆ . . . . . . . . . . Surface gravity (cgs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.074+0.045
−0.070

Teff . . . . . . . . . . . . Effective temperature (K) . . . . . . . . . . . . . . . . . . . . . . . 6102±43
[Fe/H] . . . . . . . . Metallicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.281+0.039

−0.038
Planetary Parameters:

e . . . . . . . . . . . . . . Eccentricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.22+0.12
−0.10

ω⋆ . . . . . . . . . . . . Argument of periastron (degrees) . . . . . . . . . . . . . . . . 80+110
−120

P . . . . . . . . . . . . . . Period (days) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.8457±0.0002
a . . . . . . . . . . . . . . Semi-major axis (AU) . . . . . . . . . . . . . . . . . . . . . . . . . . 0.07939+0.0010

−0.00099
MP . . . . . . . . . . . . Mass (MJ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.430+0.045

−0.046
RP . . . . . . . . . . . . . Radius (RJ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.193+0.13

−0.077
ρP . . . . . . . . . . . . . Density (cgs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.311+0.069

−0.076
loggP . . . . . . . . . . Surface gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.868+0.063

−0.081
Teq . . . . . . . . . . . . Equilibrium temperature (K) . . . . . . . . . . . . . . . . . . . . 1313+59

−38
Θ . . . . . . . . . . . . . Safronov number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0521+0.0059

−0.0061
⟨F⟩ . . . . . . . . . . . . Incident flux (109 erg s−1 cm−2) . . . . . . . . . . . . . . . . . . 0.653+0.092

−0.076
RV Parameters:

TC . . . . . . . . . . . . . Time of inferior conjunction (BJDTDB) . . . . . . . . . . . 2456269.3399+0.0071
−0.0072

TP . . . . . . . . . . . . . Time of periastron (BJDTDB) . . . . . . . . . . . . . . . . . . . . 2456269.2+1.7
−2.5

K . . . . . . . . . . . . . RV semi-amplitude (m s−1) . . . . . . . . . . . . . . . . . . . . . . 42.8+4.5
−4.2

MP sin i . . . . . . . . Minimum mass (MJ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.430+0.045
−0.046

MP/M⋆ . . . . . . . . Mass ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.000378+0.000036
−0.000037

u . . . . . . . . . . . . . . RM linear limb darkening . . . . . . . . . . . . . . . . . . . . . . . 0.6035+0.0040
−0.0039

γHIRES . . . . . . . . . m s−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −3.1±3.2
γ̇HIRES . . . . . . . . . RV slope (m s−1 day−1) . . . . . . . . . . . . . . . . . . . . . . . . . −0.239±0.037
ecosω⋆ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.02+0.13

−0.14
e sinω⋆ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.05+0.23

−0.22
f (m1,m2) . . . . . . Mass function (MJ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.000000061+0.000000020

−0.000000017
Primary Transit Parameters:

RP/R⋆ . . . . . . . . . Radius of the planet in stellar radii . . . . . . . . . . . . . . . 0.07761+0.0010
−0.00092

a/R⋆ . . . . . . . . . . Semi-major axis in stellar radii . . . . . . . . . . . . . . . . . . 10.79+0.60
−0.89

i . . . . . . . . . . . . . . Inclination (degrees) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88.81+0.79
−0.91

b . . . . . . . . . . . . . . Impact parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.20+0.14
−0.13

δ . . . . . . . . . . . . . . Transit depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.00602+0.00016
−0.00014

T0 . . . . . . . . . . . . . Best-fit linear ephemeris from transits (BJDTDB) . . 2456347.796793±0.000364
PTransit . . . . . . . . . Best-fit linear ephemeris period from transits (days) 7.8456314±0.0000459
TFWHM . . . . . . . . FWHM duration (days) . . . . . . . . . . . . . . . . . . . . . . . . . 0.212+0.039

−0.029
τ . . . . . . . . . . . . . . Ingress/egress duration (days) . . . . . . . . . . . . . . . . . . . 0.0175+0.0039

−0.0028
T14 . . . . . . . . . . . . Total duration (days) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.230+0.043

−0.032
PT . . . . . . . . . . . . . A priori non-grazing transit probability . . . . . . . . . . . 0.091+0.038

−0.021
PT,G . . . . . . . . . . . A priori transit probablity . . . . . . . . . . . . . . . . . . . . . . . 0.107+0.044

−0.024
Secondary Eclipse Parameters:

TS . . . . . . . . . . . . . Time of eclipse (BJDTDB) . . . . . . . . . . . . . . . . . . . . . . . 2456265.51+0.66
−0.70

bS . . . . . . . . . . . . . Impact parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.22+0.18
−0.14

TS,FWHM . . . . . . . FWHM duration (days) . . . . . . . . . . . . . . . . . . . . . . . . . 0.231+0.073
−0.051

τS . . . . . . . . . . . . . Ingress/egress duration (days) . . . . . . . . . . . . . . . . . . . 0.0194+0.0083
−0.0048

TS,14 . . . . . . . . . . . Total duration (days) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.251+0.081
−0.056

PS . . . . . . . . . . . . . A priori non-grazing eclipse probability . . . . . . . . . . 0.084+0.018
−0.010

PS,G . . . . . . . . . . . A priori eclipse probability . . . . . . . . . . . . . . . . . . . . . . 0.098+0.020
−0.012
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TABLE 16
KELT-6b Transit Times

Epoch TC σTC O-C O-C Observatory/
BJDTDB Sec Sec σTC Telescope

-31 2456104.581654 190 -45.17 -0.24 MORC
-8 2456285.030078 104 -145.43 -1.40 MORC
-6 2456300.723507 115 46.31 0.40 PvdKO
-1 2456339.949428 151 -151.18 -1.00 SPOT
0 2456347.797243 118 39.38 0.33 MOCDK
0 2456347.796609 79 -15.31 -0.19 MORC
0 2456347.797368 104 50.44 0.48 SPOT
0 2456347.795916 120 -77.26 -0.64 KEPCAM
0 2456347.795513 213 -112.42 -0.53 CROW
1 2456355.649675 179 625.66 3.48 MORC
1 2456355.648134 220 493.04 2.24 MBA
7 2456402.718026 82 155.28 1.89 MORC
7 2456402.715318 151 -77.39 -0.51 SPOT
8 2456410.554740 381 -618.29 -1.62 CROW
8 2456410.550639 298 -898.14 -3.01 WCO

13 2456449.788514 95 -128.47 -1.35 KEPCAM
Note: The observatory/telescope abbreviations are the same as in Table 12.

global fit. These times are listed in Table 16 and plotted in Figure 65. We find

T0 = 2456347.796793±0.000364, PTransit = 7.8456314±0.0000459, with a χ2 of 38.70

and 14 degrees of freedom. While the χ2 is larger than one might expect, this is often the

case in ground-based TTV studies, likely due to systematics in the transit data. There are

∼ 3σ deviations from the linear ephemeris on epochs 1 and 8. However, although there

are consistent TTV measurements from two independent observatories on both of those

epochs, we note that these data are all from ingress or egress only observations. Given the

likely difficulty with properly removing systematics in partial transit data, we are

unwilling to claim convincing evidence for TTVs. Further study of KELT-6b transit

timing is required to rule out TTVs.
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Figure 65. The residuals of the transit times from the best-fit ephemeris. The transit times
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8.7 Evidence for a Tertiary Companion

The Keck HIRES radial velocities show a downward trend that is well modeled by

a linear slope over the time span of the HIRES RVs as illustrated in Figure 66. The

fiducial model, which is displayed as a solid red line, is fit to the HIRES data only and has

a slope of γ̇ = −0.239±0.037 m s−1 day−1. A two-planet fit with the tertiary in a circular

orbit yields a negligible improvement of ∆χ2 = 2.2 relative to the fit with constant

acceleration, which has a ∼ 30% probability of happening by chance. With the inclusion

of the full set of 24 re-reduced TRES RVs (see §8.4.2) into the single-planet plus slope

and two-planet fits, ∆χ2 = 3.8, which has a ∼ 15% probability of happening by chance.

Although the TRES RVs shown in Figure 66 appear to fairly strongly indicate a turn-over

in the RV slope, the statistical analysis above finds only marginal evidence for a turn-over.

The TRES RVs shown in Figure 66 have been shifted to best fit the HIRES fiducial model.

Characterization of the tertiary will require continued RV monitoring of the KELT-6

system.

Our Keck AO K′ image shows no significant detection of off-axis sources, although

there are a couple of speckles at the threshold of detection (see Figure 62 and §8.4.4).

Figure 67 shows the limits on mass from the AO image and from the HIRES RVs. For a

given projected separation, masses above the heavy solid black line are excluded by the

AO image. The heavy blue dashed line shows the lower limit for mass of the tertiary for

circular orbits as a function of semimajor axis implied by the projected acceleration of

A = 87±12 m s−1 yr−1 measured from the HIRES RV data. For a circular orbit with

semimajor axis a and a given minimum planet mass MP sin i, the maximum projected

acceleration of the star due to the planet occurs at conjunction (or opposition), and is

A = GMP sin i a−2 (Torres, 1999). Thus a strict lower limit on the tertiary mass capable of

producing the measured acceleration can be defined for a given a, assuming circular

orbits6. Note that this mass increases as the square of projected separation. The light blue

6We note that this constraint assumes that the tertiary imposes a constant acceleration during the time
spanned by the RV observations. In particular, it assumes that the systemic radial velocity has varied mono-
tonically between the two groups of HIRES RVs shown in Figure 66. Because there is a substantial gap
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dashed lines show the 1σ uncertainty on the minimum MP sin i due to the uncertainty in the

measured acceleration. Masses for the purported tertiary that fall below the blue dashed

lines are excluded, as they do not provide sufficient acceleration at conjunction for a given

semimajor axis to explain the observed trend even for an edge-on orbit. However, there

could be undetected companions in the region below the blue dashed lines that are not

responsible for the observed RV acceleration. The RV and AO mass curves intersect for

masses comparable to the primary star, and at the diffraction-limit of a 10 m telescope on

the projected separation axis. Therefore, if the speckles at the threshold of detection in

Figure 62 are astrophysical, they cannot be responsible for the observed long-term

acceleration in the KELT-6 radial velocities.

8.8 False Positive Analysis

One of the many challenges of ground-based photometric surveys for transiting

planets is the relatively high rate of astrophysical false positives prior to RV and high

precision photometry follow-up observations (e.g. Latham et al. 2009). Blended eclipsing

stellar binary or triple systems can mimic some of the observable signatures of transiting

low-mass companions to single stars. Brown (2003) estimated the a priori detection rates

of such false positives in ground-based transit surveys similar to KELT, finding a rate that

was a factor of several times larger than the expected detection rate for transiting giant

planets. However, for KELT-6b, we have several lines of evidence that disfavor a false

positive scenario.

First, we measured the line bisector spans of the TRES spectra following Torres et

al. (2007) to explore the possibility that the RV variations are actually distortions in the

spectral line profiles due to a nearby unresolved eclipsing binary or stellar activity. The

bisector span variations are listed in Table 11 and plotted in the bottom panel of Figure 59.

between these two groups of points, shorter-period orbits for the tertiary in which the acceleration changes
sign twice between the two groups are possible. However, we deem these to be unlikely.
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Figure 66. HIRES and TRES unphased KELT-6 radial velocities. HIRES radial velocity
measurements are shown as black squares. TRES radial velocities are show as gray circles.
The HIRES error has been scaled by 2.808 as determined by the fiducial EXOFAST global
fit (see §8.6). The TRES errors are unrescaled. The single-planet plus linear slope fiducial
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the TRES data appear to indicate a turnover in the RV slope, a joint fit to the HIRES and
TRES data indicate only marginal evidence for a turn-over (see §8.7).
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The resulting bisector span variations are consistent with zero and show no correlation

with the RV variations. As noted in §8.4.2, we did not attempt to measure line bisectors

for the HIRES spectra since the PSF varies quite dramatically in the slit-fed HIRES

instrument simply from guiding and spectrometer focus variations, which can cause

instrumentally induced line asymmetries that cannot be easily distinguished from stellar

sources.

Second, our follow-up photometric observations of full transits in several different

filters (griz) are all consistent with the primary transit having nearly the same depth, and

are well-modeled by transits of a dark companion across a star with the limb darkening

consistent with its spectroscopically measured Teff and logg⋆ (see Figure 60 and §8.6.2).

Since the multi-band depth difference expected for a false positive scenario depends

strongly on the color difference of the blended stars, the multi-band transit observations

cannot rule out all false positive configurations, but can significantly limit the allowed

parameter space.

Third, we collected eight sequences of photometric observations near the time of

predicted secondary eclipse (at five different epochs) in z and Pan-STARRS-Z bands as

detailed in Table 12. The individual phased light curves and the combined binned light

curve are shown in Figure 68 and cover 12 hours near the time of predicted secondary

eclipse. As shown in Table 15, the fiducial predicted time of secondary eclipse has an

uncertainty of ∼ 16 hours. We do not find conclusive evidence of a & 1 mmag secondary

eclipse ingress or egress in our data. However, we do not have complete phase coverage of

all the secondary eclipse times that are allowed by our global fits, and therefore we cannot

place a robust lower limit on the depth of any putative secondary transit arising from a

blended eclipsing binary.

Although the multi-band transit and secondary eclipse observations cannot exclude

all blend scenarios, they disfavor blend scenarios in which the observed transits are due to

diluted eclipses of a much fainter and redder eclipsing binary (e.g., O’Donovan et al.

2006).

211



-8 -6 -4 -2 0 2 4
Time - TS (hrs)

1.00

1.05

1.10

1.15
N

o
rm

a
liz

e
d

 f
lu

x
 +

 C
o

n
s
ta

n
t

MBA UT 2013-02-20 (z)

SPOT UT 2013-02-20 (z)

KEPCAM UT 2013-02-28 (z)

ELP UT 2013-04-08 (z)

KEPCAM UT 2013-04-08 (z)

MORC UT 2013-04-16 (z)

ELP UT 2013-04-24 (z)

KEPCAM UT 2013-04-24 (z)

COMBINED AND BINNED

Figure 68. Phased observations of KELT-6 near the time of predicted secondary transit.
The ephemeris used to phase the data is T0 = 2456265.51 (BJDT DB) and P = 7.8457 (days).
The fiducial ephemeris is uncertain by ∼ 0.7 days. Our observations cover only ∼ 50% of
the region of uncertainty. The red overplotted lines are the constant brightness models. The
observatory/telescope abbreviations are the same as in Table 12. The bottom light curve
shows all observations combined and binned in 5 minute intervals, and has residuals of
0.06% RMS. We find no evidence for a secondary transit in the data.
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Fourth, the fiducial transit derived stellar surface gravity logg⋆transit = 4.074+0.045
−0.070 (the

fiducial fit does not use a spectroscopic prior on logg⋆) and the HIRES spectroscopically

derived surface gravity logg⋆HIRES = 3.961±0.060 are consistent within ∼ 1.5σ.

Finally, our adaptive optics imaging excludes companions beyond a distance of 0.5

arcseconds from KELT-6 down to a magnitude difference of 6.0 magnitudes at 10σ

confidence. See Figure 63.

We conclude that all of the available data are best explained by a Jupiter-sized,

Saturn-mass companion transiting a slowly-rotating late-F star, with little or no evidence

for significant contamination from blended sources.

8.9 Evolutionary Analysis

8.9.1 Stellar Models and Age

We use global fit values for Teff, logg⋆, stellar mass, and metallicity (§8.6 and Table

14 columns “Fit 1” and “Fit 5”), in combination with the theoretical evolutionary tracks of

the Yonsei-Yale stellar models (Demarque et al., 2004), to estimate the age of the KELT-6

system. We have not directly applied a prior on the age, but rather have assumed uniform

priors on [Fe/H], logg⋆, and Teff, which translates into non-uniform priors on the age. The

standard version of EXOFAST uses the Torres et al. (2010) relations to estimate stellar

mass and radius at each step of the MCMC chains. The top panel of Figure 69 shows the

theoretical HR diagram (logg⋆ vs. Teff) corresponding to Table 14 column “Fit 5”. We also

show evolutionary tracks for masses corresponding to the ±1σ extrema in the estimated

uncertainty. The Torres constrained global fit values for Teff and logg⋆ are inconsistent by

more than 1σ with the Yonsei-Yale track corresponding to the stellar mass and metallicity

preferred by this global fit. To investigate the inconsistency, we modified EXOFAST to

use the Yonsei-Yale models rather than the Torres et al. (2010) relations to estimate stellar

mass and radius at each MCMC step. The bottom panel of Figure 69 is the same as the top

panel, but for the fiducial Yonsei-Yale constrained global fit corresponding to Table 14
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column “Fit 1”. The intersection of global fit values for Teff and logg⋆ now fall near the

Yonsei-Yale track at 6.1±0.2 Gyr, where the uncertainty does not include possible

systematic errors in the adopted evolutionary tracks. The Torres constrained global fit

yields an age that is about 25% younger, and planet mass and radius that is larger by

∼ 4 − 7%. Although we cannot explain the inconsistency between the Torres constrained

global fit and the Yonsei-Yale track, we expect that it may be due to slight inaccuracies in

the Yonsei-Yale models and/or the Torres et al. (2010) relations for metal poor stars. We

adopt the Yonsei-Yale constrained global fit for the analyses in this paper.

KELT-6 is evidently a late-F star that is just entering the subgaint stage of

evolution. To check that the isochrone age is consistent with other parameters of KELT-6,

we use the gyrochronology relations of Barnes (2007) to compute the age based on the

rotation period of the star and its B −V color. We checked the KELT light curve for

periodic variability associated with spot modulation as an indicator of Prot , but we were

unable to detect any significant sinusoidal variability beyond the photometric noise.

Lacking a direct measurement, we estimated Prot using the projected rotational velocity

from §8.5.2 and the stellar radius from the adopted global fit in §8.6 to be

Prot/sin irot = 16.2±3.8 days. Harris & Upgren (1964) photoelectrically measured

magnitudes and colors of KELT-6 and found B −V = 0.49±0.008. Tycho (Høg et al.,

2000) measured BT and VT (Table 13), and through the filter transformations described in

ESA (1997), the Tycho-based color is B −V = 0.415±0.069. Because the Harris &

Upgren (1964) precision is much higher than Tycho’s, and since the Tycho color is

consistent with the Harris & Upgren (1964) color at nearly 1σ, we adopt the Harris &

Upgren (1964) color for this analysis. In particular, we are worried about inaccuracies in

the Tycho-to-Johnson filter-band transformations, especially for metal-poor stars; Høg et

al. (2000) state that these filter-band transformations are approximate. Based on the

adopted rotation period and B −V color of the star, we calculate the maximum predicted

age (subject to the inclination of the rotation axis to our line of sight) to be 5.7±1.3 Gyr,

which is fully consistent with the isochrone age. We note that if the Tycho fiducial color is
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used with the adopted rotation period, the Barnes (2007) relations yield an unrealistically

large age of 46 Gyr, due to the fact that these relations break down for stars with

B −V . 0.4, which generally have small or non-existant convective envelopes.

8.9.2 Insolation Evolution

In an investigation of transiting giant exoplanets, Demory & Seager (2011) found

that for planets insolated beyond the threshold of 2×108 erg s−1 cm−2 the radii are inflated

compared to those planets with lower levels of insolation. KELT-6b currently has incident

flux well above that threshold, and is a mildly inflated hot Saturn with a density of

0.248+0.059
−0.050 g cm−3. It follows the insolation-inflation trend displayed in Figure 1 of

Demory & Seager (2011). However, it is worth investigating whether KELT-6b has always

been insolated above the Demory & Seager (2011) threshold. If it turns out that KELT-6b

only recently began receiving enhanced irradiation, this could provide an empirical probe

of the timescale of inflation mechanisms (see Assef et al. 2009 and Spiegel &

Madhusudhan 2012).

To answer that question, we simulate the reverse and forward evolution of the

star-planet system, using the fiducial global fit parameters listed in Table 15 as the present

boundary conditions. This analysis is not intended to examine circularization of the

planet’s orbit, tidal locking to the star, or any type of planet-planet or planet-disk

interaction or migration. Rather, it is a way to infer the insolation of the planet over time

due to the changing luminosity of the star and changing star-planet separation.

We include the evolution of the star, which is assumed to follow the YREC stellar

model corresponding to M = 1.1 M⊙ and Z = 0.0162 (Siess et al., 2000). We also assume

that the stellar rotation was influenced only by tidal torques due to the planet, with no

magnetic wind and treating the star like a solid body. Although the fiducial model from

§8.6.2 has an eccentric orbit, we assume a circular orbit throughout the full insolation

analysis. The results of our simulations are shown in Figure 70. We tested a range of

values for the tidal quality factor of the star Q⋆, from log Q⋆ = 5 to log Q⋆ = 9. We find
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Figure 69. Theoretical HR diagrams based on Yonsei-Yale stellar evolution models (De-
marque et al., 2004). The gray swaths represent the evolutionary track for the best-fit values
of the mass and metallicity of the host star from the global fits corresponding to Table 14
columns “Fit 1” (bottom panel) and “Fit 5” (top panel) and discussed in §8.6. The tracks for
the extreme range of 1σ uncertainties on M⋆ and [Fe/H] are shown as dashed lines brack-
eting each gray swath. Top panel: The Yonsei-Yale track based on the Torres constrained
global fit corresponding to Table 14 column “Fit 5’ (see §8.9 for explanation). Bottom
panel: The Yonsei-Yale track based on a Yonsei-Yale constrained fiducial global fit corre-
sponding to Table 14 column “Fit 1’. The thick red crosses show Teff and logg⋆ from the
EXOFAST global fit analyses. The thin green crosses show the inferred Teff and logg⋆ from
the HIRES spectroscopic analysis alone. The blue dots represent the location of the star for
various ages in Gyr. The Torres constrained global fit is inconsistent with the Yonsei-Yale
track at > 1σ. We adopt the Yonsei-Yale constrained global fit represented in the bottom
panel resulting in a slightly evolved star with an estimated age of 6.1±0.2 Gyr, where the
uncertainty does not include possible systematic errors in the adopted evolutionary tracks.
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that this system is highly insensitive to the value of Q⋆, because tides are not important for

this system for the parameter ranges we analyzed. In all cases, KELT-6b has always

received more than enough flux from its host to keep the planet irradiated beyond the

Demory & Seager (2011) insolation threshold required for inflation.

8.10 Discussion

From our global fit to the spectroscopy, light curves, and HIRES RVs, we find that

KELT-6b is a metal-poor hot Saturn with a measured mass MP = 0.430+0.045
−0.046 MJ and radius

RP = 1.193+0.130
−0.077 RJ. It is on an orbit with eccentricity e = 0.22+0.12

−0.10 and semimajor axis of

a = 0.07939+0.00100
−0.00099 AU. The host KELT-6 is a slightly evolved late-F star with a mass

M⋆ = 1.085±0.043 M⊙, radius R⋆ = 1.580+0.16
−0.094 R⊙, effective temperature

Teff = 6102±43 K, and a likely age of 6.1±0.2 Gyr. Because of its larger semimajor axis

(compared to a typical hot Jupiter), KELT-6b receives a moderate stellar insolation flux of

⟨F⟩ = 6.53+0.92
−0.76 ×108 erg s−1 cm−2, implying a moderate equilibrium temperature of

Teq = 1313+59
−38 K assuming zero albedo and perfect redistribution. The surface gravity and

density of KELT-6b are loggP = 2.868+0.063
−0.081 and ρp = 0.311+0.069

−0.076 g cm−3. We do not have

in-transit KELT-6b RV data, so we have no Rossiter-McLaughlin effect constraint on the

projected rotation axis of its host star.

Even among the ever growing list of known transiting exoplanets, KELT-6b is

unique. We compare planet mass as a function of the orbital period (Figure 71), incident

flux as a function of loggP (Figure 72), and [Fe/H] as a function of loggP (Figure 73), for

the group of all transiting hot gas giants orbiting bright hosts, which we define as

m > 0.1 MJ, P < 20 days, and host star V < 11.0. Within that group, KELT-6 is among the

20 brightest host stars, and KELT-6b has the third longest orbital period (Figure 71),

second lowest mass (Figure 71), and is the most metal-poor (Figure 73). In the larger

group of all transiting exoplanets discovered by ground-based transit surveys, KELT-6b

has the sixth longest period and the second longest transit duration. To our knowledge, the

high precision photometric follow-up observations reported in this work include the
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longest duration transit ever fully observed from a single ground-based telescope.

Perhaps the most significant importance of the KELT-6b discovery is that it has

similar loggP and incident flux as HD 209458b (Figure 72), one of the most studied and

best understood exoplanets, but its host has a metallicity that is lower than HD 209458 by

∼ 0.3 dex7 (Figure 73). This, combined with the fact that KELT-6 is relatively bright at

V ∼ 10.4 (Figure 74), means that this system provides an opportunity to perform

comparative measurements of two similar planets in similar environments around stars of

very different metallicities. In particular, we advocate attempting to acquire both

transmission and secondary eclipse spectroscopy from the ground and space. The

resulting spectra can be compared directly with those already in hand for HD 209458b

(e.g., Knutson et al. 2008; Désert et al. 2008; Sing et al. 2008; Snellen et al. 2008; Swain

et al. 2009). Such direct comparisons may, for example, elucidate the effect of bulk

composition of the planet atmosphere on the cause of atmospheric temperature inversions.

We note that, in order to properly plan for secondary eclipse observations, additional

radial velocity observations will be needed to more precisely constrain the eccentricity of

KELT-6b and so predict the time of secondary eclipse. Such observations will also be

important for characterizing the orbit of the tertiary object in the KELT-6 system. For

these reasons, KELT-6b should prove to be a very interesting object for further study.
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transiting, hot gas giants with m > 0.1 MJ, P < 20 days, and host star V < 11.0. Both
KELT-6b and HD 189733b are sub-Jupiter mass planets. The three RV discovered planets
are shown as magenta filled triangles (HD 189733b and HD 149026b) and a large blue
filled square (HD 209458b). All other transits were discovered by ground-based transit
surveys. No Kepler targets currently meet the specified criteria for inclusion in the group.
The KELT-North survey planets are shown as red filled circles, except KELT-6b which is
shown as a large red filled square. All other planets are shown as green filled circles. KELT-
6b and HD 209458b offer an opportunity to perform a comparative measurement of two
similar mass planets in similar environments around stars of very different metallicities.
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Figure 72. Comparison of KELT-6b incident flux as a function of planet surface gravity
with bright, transiting, hot gas giants with m > 0.1 MJ, P < 20 days, and host star V < 11.0.
Both KELT-6b and HD 189733b are sub-Jupiter mass planets. The three RV discovered
planets are shown as magenta filled triangles (HD 189733b and HD 149026b) and a large
blue filled square (HD 209458b). All other transits were discovered by ground-based transit
surveys. No Kepler targets currently meet the specified criteria for inclusion in the group.
The KELT-North survey planets are shown as red filled circles, except KELT-6b which
is shown as a large red filled square. All other planets are shown as green filled circles.
KELT-6b has surface gravity and incident flux similar to HD 209458b. All else being
equal, objects in the top left have the highest transmission spectroscopy signal. Bottom
panel: [Fe/H] as a function of planet surface gravity. KELT-6b has metallicity lower than
HD 209458b by ∼ 0.3 dex. KELT-6b and HD 209458b offer an opportunity to perform a
comparative measurement of two similar planets in similar environments around stars of
very different metallicities.
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Figure 73. Comparison of KELT-6b metallicity as a function of planet surface gravity with
bright, transiting, hot gas giants with m > 0.1 MJ, P < 20 days, and host star V < 11.0.
Both KELT-6b and HD 189733b are sub-Jupiter mass planets. The three RV discovered
planets are shown as magenta filled triangles (HD 189733b and HD 149026b) and a large
blue filled square (HD 209458b). All other transits were discovered by ground-based transit
surveys. No Kepler targets currently meet the specified criteria for inclusion in the group.
The KELT-North survey planets are shown as red filled circles, except KELT-6b which is
shown as a large red filled square. All other planets are shown as green filled circles. KELT-
6b has metallicity lower than HD 209458b by ∼ 0.3 dex. KELT-6b and HD 209458b offer
an opportunity to perform a comparative measurement of two similar planets in similar
environments around stars of very different metallicities.
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Figure 74. Transit depth assuming no limb darkening as a function of the host star apparent
V magnitude for transiting systems with relatively bright (V ≤ 12) hosts. KELT-6b is shown
as the green six-pointed star. The other KELT discoveries are also shown, and the transiting
systems with very bright hosts (V ≤ 8) are labeled. Systems in the top left tend to be the
most amenable to detailed spectroscopic and photometric studies.
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CHAPTER 9

KELT-1b SECONDARY ECLIPSE CHARACTERIZATION

This chapter presents the work I contributed to Beatty et al. (2014) as second

author. A summary of the Beatty et al. (2014) introductory material is provided in the next

section for context. A description of my contributions and the related results are provided

in the remaining sections. To my knowledge, the MORC telescope data contributed to

Beatty et al. (2014) provide the first (albeit tentative) optical-band detection of the

secondary transit of a low-mass companion by a ground-based telescope.

9.1 Introduction

Among substellar objects, the relationship between giant planets and brown dwarfs

is unclear. The generally acknowledged dividing line between these two classes of objects

is based on mass. Specifically, objects above the minimum mass needed to burn deuterium

are defined as brown dwarfs, whereas objects less massive than this limit are defined as

planets. The deuterium burning limit is roughly ∼13MJ, although in detail this depends

on one’s definition of “burning deuterium,” and on the detailed composition of the object

(Spiegel et al., 2011).

On the one hand, distinguishing between objects below and above 13MJ is clearly

arbitrary, particularly since after roughly a billion years deuterium burning is over and any

evidence of this initial internal energy source is largely gone, i.e., an old ∼50MJ object

that never fused deuterium would be difficult to distinguish from one that did (Spiegel et

al., 2011; Bodenheimer et al., 2013; Mollière & Mordasini, 2012). On the other hand,

giant planets and massive brown dwarfs likely have distinct origins, at least for

225



companions to sunlike stars. This is evidenced by the existence of the brown dwarf desert,

the local minimum in the mass function of relatively close-in (.10AU) companions to

sunlike stars near ∼30 to ∼50MJ (e.g., Marcy & Butler, 2000; Grether & Lineweaver,

2006; Sahlmann et al., 2011). Presumably, objects below the brown dwarf desert were

formed in a circumstellar disk, whereas objects above were formed in a manner more

analogous to stars. However, this hypothesis is relatively untested.

Unfortunately, obtaining empirical constraints on giant planets and brown dwarfs

in similar environments has proven difficult. The majority of our empirical constraints on

brown dwarfs come from isolated brown dwarfs, brown dwarf binaries, or brown dwarfs as

wide companions to stars (Luhman, 2012). These systems are often amenable to detailed

study of their atmospheres, including spectra and time series photometry. However, in the

vast majority of cases, these objects do not have masses, radii, or age measurements. In

contrast to brown dwarfs, the majority of our empirical constraints on giant planets comes

from transiting systems. These systems provide masses, radii, and crude ages for most

systems, but because of selection biases, nearly all these planets are on short periods and

so likely are tidally locked and subject to very strong stellar irradiation, dramatically

altering and complicating their atmospheres and atmospheric dynamics. Therefore, the

empirical constraints on these systems cannot be directly interpreted in the same context

as isolated brown dwarfs, hampering the ability to define the relationship between these

two types of objects. The existence of the brown dwarf desert, and the resulting paucity of

transiting brown dwarfs, has prevented any direct comparison of observations of brown

dwarfs under similarly irradiated environments as close-in giant planets.

KELT-1b (Siverd et al., 2012) is the first low-mass transiting companion

announced by the KELT-N transit survey (Pepper et al., 2003, 2007). It is a highly inflated

27MJ brown dwarf transiting a V = 10.7 mid-F star and provides the best opportunity to

directly compare a brown dwarf to giant exoplanets under the same environmental

condition of strong external irradiation. Previously discovered transiting brown dwarf

companions orbit stars that are too faint to allow for high quality follow-up observations
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(see Beatty et al. 2012 for details). KELT-1b allows us to study a brown dwarf where we

know the mass and radius, in an irradiation and tidal environment similar to hot Jupiters,

and around a star bright enough to allow for precision follow-up observations. To take

advantage of the opportunity offered by KELT-1b, we observed several secondary eclipses

of the KELT-1 system from the ground and from space during the fall of 2012.

I contributed the Astrodon z′-band (0.9µm) ground-based observations and data

reduction while other coauthors contributed the 3.6µm and 4.5µm space-based data from

the IRAC instrument on the Spitzer Space Telescope.

9.2 Ground-based Observations

Over the summer and fall of 2012, I observed seven secondary eclipses of

KELT-1b in z′ at Moore Observatory using the MORC telescope. Since KELT-1 is

separated from its nearest detectable neighbor in DSS2 imagery by ∼18′′, I was able to

defocus the telescope to allow for longer exposures without the risk of blending from the

neighbor star. The same observing parameters were used for the ground-based

observations across all nights. The exposure time was 240 seconds and the target and

comparison stars were placed at the same detector locations, and guiding maintained this

placement within a few pixels across all nights. Image calibration consisted of bias

subtraction, dark subtraction, flat-field division, and detector non-linearity compensation.

Differential aperture photometry was performed on the calibrated images using

AIJ. The comparison stars were selected from sources on the detector which had z′-band

brightness similar to KELT-1 and which produced relatively flat light curves (after airmass

detrending) when compared to the other stars in the ensemble. The final comparison

ensemble included four stars near KELT-1 (TYC 2785-2151-1, TYC 2781-2231-1, LTT

17089, and TYC 2785-1743-1). I chose to allow the photometric aperture radius to vary

based on an AIJ estimate of the FWHM of the toroidal PSF. After testing values in the

range of 1.0 to 1.4 times the estimated FWHM, it was found that a factor of 1.25

minimized the scatter in the light curves. This factor resulted in an aperture radius that
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varied between ∼ 20 − 30 pixels across the four nights. The sky background was estimated

from an annulus with inner radius 40 pixels and outer radius 80 pixels. Iterative 2σ

clipping was first performed to remove outliers and stars from the background annulus.

The mean of the remaining pixels was adopted as the sky background value and subtracted

from each pixel in the photometric aperture.

Three of the events, on UT 2012 September 7, 2012 October 5 and 2012 October

12, suffered from abnormally poor seeing or interruptions by clouds. Those observations

were excluded from consideration. The other four secondary eclipses, on UT 2012 July

30, 2012 August 16, 2012 November 18 and 2012 November 29, were high-quality,

complete observations of the eclipses. The typical per point uncertainties on these nights

were 0.10% to 0.13%. The top four panels in Figure 75 show the light curves from these

four good nights plotted individually, after being detrended against airmass and time as

described in Section 9.3.2.

9.3 Light curve Fitting

The light curve fitting of both the Spitzer and MORC data was performed primarily

by the lead author T. Beatty, with some support from this author regarding systematic and

decorrelation handling of the MORC data. A summary of the MORC data fitting and

results is provided here. Refer to Beatty et al. (2014) for the Spitzer data fitting and results.

9.3.1 Secondary Eclipse Model

We modeled the IR data as a combination of a Mandel & Agol (2002) eclipse light

curve and a set of decorrelation parameters. To make the eclipse light curves we used the

implementation of the Mandel & Agol (2002) light curves built into EXOFAST (Eastman et

al., 2013). We modeled the eclipse by assuming KELT-1b was a uniformly bright disk,

with no limb-darkening, being occulted by the much larger KELT-1. Compared to a transit

light curve, this has the immediate effect that RP/R∗ and the eclipse depth are no longer

directly related.
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Figure 75. All four of the lightcurves used to calculate the constraint on the eclipse depth in
z′. The bottom panel shows all four phased and overplotted. Each lightcurve has also been
linearly detrended against airmass and time. The black points are binned versions of the
individual and combined lightcurves, while the red line in the bottom panel is the best-fit
eclipse model. We marginally detect the eclipse in z′ with a depth of 0.049±0.023%.
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9.3.2 Model Fit to MORC z′ Data

We analyzed each of the four nights individually. We fit only for the depth of a

possible eclipse using a trapezoidal eclipse model that had the eclipse time, total duration

and ingress/egress duration fixed. We computed the expected eclipse times for each night

by extrapolating from our measured 3.6µm eclipse time and assuming a fixed period of

1.217514 days. The choice of the 3.6µm eclipse time is arbitrary; we repeated our entire

analysis of the z′ data using the 4.5µm eclipse time and found no difference in our results.

The total duration and ingress/egress duration we set to the average of our 3.6µm and

4.5µm results. In addition to the eclipse model, we also included linear decorrelation

terms for airmass and time. We scaled the errors on each night so that a baseline zero

depth fit had a reduced χ2 of one. In all cases the scaling factor was within ten percent of

unity. We used the baseline fit to calculate the ∆χ2 values for the non-zero depth fits.

Combining the data from all four good nights, we find suggestive evidence for an

eclipse depth of 0.049±0.023% in z′. Figure 76 shows the ∆χ2 as a function of eclipse

depth for these four nights. The black line in Figure 76 is the ∆χ2 of all the nights added

together, and is valid under the assumption that our uncertainties are uncorrelated night to

night. We have adopted this joint constraint as our final determination of the z′ eclipse

depth of KELT-1b. Figure 75 shows the four complete z′ light curves individually, and

combined, phased, and over-plotted with our best fit eclipse model.

If the detection in z′ is real, then it is the result of thermal emission from KELT-1b,

and not reflected light. In the case of an extreme Bond albedo of one, and assuming

KELT-1b reflects as a Lambert sphere, then the eclipse depth due to reflected light alone

would be ∼ 0.03%. A more realistic Bond albedo of 0.1 would reduce this depth by a

factor of ten, and place it far below our precision in z′.
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Figure 76. Constraints on the eclipse depth in z′ from our ground-based observations.
Though we observed seven eclipses, only four of the nights provided high-quality, complete
observations. The black line shows the joint constraint on the eclipse depth from all four
nights. This assumes that the observational errors are uncorrelated from night to night.
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9.4 Secondary Eclipse Detection Results

We strongly detect the secondary eclipses of KELT-1b at both 3.6µm and 4.5µm

(see Beatty et al. 2014), and weakly detect the eclipse in z′ (see Figures 75 and 76). We

measure eclipse depths of δz = 0.049±0.023% in z′, δ3.6 = 0.195±0.010% at 3.6µm and

δ4.5 = 0.200±0.012% at 4.5µm. These depths correspond to brightness temperatures of

3300K, 3150K and 3000K for the 0.9µm (z′), 3.6µm and 4.5µm eclipses, respectively.

9.5 Discussion

Overall, KELT-1b is a unique object: it is a relatively high mass and high surface

gravity object that orbits only 3.6 stellar radii away from its host star. Among high mass

sub-stellar objects, this places KELT-1b squarely in a radiation environment that until now

has been populated solely by hot Jupiters. It has a surface gravity of loggP = 4.74 (∼ 30

times higher than for a typical hot Jupiter), which allows us to test theories of hot Jupiter

atmospheres at a very high surface gravity. Of particular interest are the amount of heat

redistribution and the presence of a stratospheric temperature inversion within the

atmosphere of KELT-1b. Perez-Becker & Showman (2013) have noted that planets hotter

than ∼2000K are observed to have extremely low amounts of heat redistribution from

their daysides to their nightsides, presumably because the shorter radiative timescales in

hotter atmospheres cause these planets to reradiate the incident stellar flux, rather than

advecting it through winds to the nightside. In KELT-1b, due to its high surface gravity,

the theoretical radiative timescale is relatively longer, and the theoretical advection

timescale relatively shorter, than in most hot Jupiters.

Similarly, consider the presence of a stratospheric temperature inversion in the

atmosphere of KELT-1b. Temperature inversions have been observed in several hot

Jupiters, predominantly among those with equilibrium temperatures higher than 2000K

(e.g., Cowan & Agol, 2011). Hubeny et al. (2003) and Fortney et al. (2008) have proposed

that gas-phase TiO in an atmosphere causes temperature inversions, since it is a strong
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optical absorber and condenses between 1900K and 2000K, depending on the pressure.

However, the ultimate cause of inversions, and their precise regulatory mechanisms, have

not been definitively agreed upon.

Our observations are not sufficient to conclusively determine whether a TiO

inversion exists in the atmosphere of KELT-1b, but we can nonetheless provide some

useful constraints. Figure 77 shows our measured eclipse depths on top of atmosphere

models from Fortney et al. (2008). The models without TiO (dashed lines) are for an

atmosphere without an inversion, while the TiO models (solid lines) have an inversion.

The best fit to the data is the no-TiO, strong hotspot model, with χ2 = 2.23 for three

degrees of freedom. However, the no-TiO, mild hotspot model has a ∆χ2 relative to the

best model of only 1.44, while the TiO, day-side redistribution model has a ∆χ2 = 2.60,

and thus these models are also consistent with the data. On the other hand, the no-TiO,

day-side redistribution model is marginally excluded with ∆χ2 = 11.31, and while the

TiO, complete redistribution model is strongly excluded with ∆χ2 = 60.07.

9.6 Summary and Conclusions

We have measured the secondary eclipse of the highly irradiated transiting brown

dwarf KELT-1b in three bands. These observations are the first constraints on the

atmosphere of a highly irradiated brown dwarf. Specifically, we measure secondary

eclipse depths of 0.195±0.010% at 3.6µm and 0.200±0.012% at 4.5µm. We also find

tentative evidence for the secondary eclipse in the z′ band with a depth of 0.049±0.023%.

From these measured eclipse depths, we conclude that KELT-1b does not have a high heat

redistribution efficiency, and does not show strong evidence for a stratospheric

temperature inversion. Our Spitzer measurements reveal that KELT-1b has a [3.6] − [4.5]

color of 0.07±0.11, identical to that of isolated brown dwarfs of similarly high

temperature. In contrast, hot Jupiters generally show redder [3.6] − [4.5] colors of ∼0.4,

with a very large range from ∼0 to ∼1.
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no TiO, strong hotspot

no TiO, mild hotspot

no TiO, day-side redist.

TiO, day-side redist.

TiO, complete redist.

Figure 77. Our measured planet-to-star flux ratios at 0.9µm (z′-band), 3.6µm, and 4.5µm.
The atmosphere models are based on Fortney et al. (2008), and are divided according to the
presence of gaseous TiO and the amount of heat redistribution from the day to night side.
The ‘TiO’ models have stratospheric temperature inversions, while the ‘no TiO’ models
do not. The ‘hotspot’ models are scenarios wherein the heat from the stellar insolation
is redistributed over only a portion of the planetary day side. In the ‘strong hotpot’ this
redistribution area is smaller than in the ‘mild hotspot’ model. The colored triangles show
the predicted flux ratios from each of the models in the three bandpasses.
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CHAPTER 10

CONCLUSIONS AND NEXT POSSIBILITIES

10.1 Summary of Results

The data presented in this work show that competitive scientific results can be

achieved using telescopes with aperture diameters < 1 m. To achieve these results, best

efforts must be made to minimize systematics at the time of observations. Even so,

systematic residuals will be ever-present in ground-based data and will need to be

addressed in the data reduction process in order to push photometric precision as near as

possible to the shot-noise limit. Many light curve fitting tools attempt to minimize

systematic trends by making corrections to the data based on a linear or quadratic best fit

to time. This approach can help remove airmass and other long term trends, but to remove

shorter term or highly irregular systematics, data correlated with those systematics must

be recorded and/or calculated and included as part of the detrending and model fitting

process. As discussed in Chapter 4, AstroImageJ provides the tools needed to collect,

calculate, and assess the effectiveness of various trend datasets as part of the differential

photometry and initial light curve fitting process. To maximize the number of trend

datasets that can be used when fitting multiple transit light curves, it is imperative to use a

tool such as multi-EXOFAST that simultaneously detrends and fits a global model to the

data by allocating common parameters to represent physical properties that must be the

same for all light curves. Because the use of common parameters reduces the total number

of globally fitted parameters, the over-fitting that often occurs when attempting to detrend

an individual light curve with more than a few (1 − 3, depending on the amount of baseline

data available) trend datasets is mitigated.
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Using the simultaneous global fit and detrend technique, I have demonstrated the

capability to reach a 5 minute photometric precision of 183 ppm in the WASP-12b model

residuals presented in Chapter 5. Systematic minimization also plays a key role in

achieving high-precision timing measurements of transiting planets. Because the ingress

and egress slopes of a light curve play a dominant role in defining the modeled transit

center time, a slight systematic during those short time periods can induce a significant

inaccuracy in the derived TTV. The ∼ 20 − 30 s timing precisions I achieved in the

WASP-12b and Qatar-1b TTV studies presented in Chapters 5 and 6 are clear

improvements over the precisions achieved by other groups.

In Chapters 7 and 9, the simultaneous global fitting and detrending technique was

applied to the study of exoplanet and brown dwarf atmospheres. In Chapter 7, I presented

a tentative detection of Sodium in the atmosphere of the hot Jupiter HD 189733b by

measuring an increase of 0.05% in the apparent planetary radius in a narrow wavelength

band around the Na D doublet using two different techniques. In Chapter 9, I presented

the tentative detection of the thermal emission of KELT-1b in the z′ band, which helped to

show that the brown dwarf’s atmosphere does not have a high heat redistribution

efficiency, and does not show strong evidence for a stratospheric temperature inversion.

In Chapter 8, I discussed the discovery of a hot Saturn planet around a metal poor

star. The high-precision photometry from the MORC and other telescopes was combined

with high-precision RVs and high-resolution adaptive optics imagery from the Keck

telescope to characterize the system and confirm the planetary nature of the transiting

object. Furthermore, the data were used to place limits on the mass and orbital period of a

second body orbiting the same host star.

In addition to the light curves presented in this work, I have observed more than

100 light curves of other known transiting exoplanets in a search for additional planets in

those systems through high-precision TTV measurements. All of the known transiting

system light curves I have collected are summarized in Table 17. Although there are

multiple observations of a few systems in addition to the WASP-12b, Qatar-1b, and
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HD 189733b systems presented in Chapters 5, 6 and 7, more observations are needed to

complete a proper TTV analysis of those systems. Given time and telescope availability, I

plan to continue following some of these systems to search for TTVs and to provide

detailed characterizations. At an appropriate point in time, any unpublished light curves

will be made available to the community through a publicly available database such as the

NASA Exoplanet Archive1 (Akeson et al., 2013). I have also observed ∼ 400 follow-up

light curves in collaboration with the KELT-N and KELT-S teams in the search for new

transiting planets. So far, five transiting planets have been announced and six more are in

the publication pipeline. Continued collaboration with the KELT team will hopefully

produce many more interesting exoplanet discoveries.

10.2 Near-IR Photometry From Small Telescopes

As discussed in §1.5.3, planetary thermal emission observations provide important

measurements to help characterize exoplanets and their atmospheres. Thermal emission is

best measured in near-infrared (NIR) and mid-infrared (MIR) bands where the contrast

ratio of the emission from the host star and its planetary companion is much lower than in

optical bands. Both NIR and MIR observations have generally been limited to large or

space-based telescopes. Obtaining time from those facilities is a highly competitive

process. Plus, in many cases, transiting planet host stars are too bright to be suitable for

NIR photometric observations with large ground-based telescopes. That issue will be even

worse for brighter K2 and TESS planet hosts. An additional complication is that the

secondary transit ephemeris is not always well constrained due to uncertainties in the

eccentricity from RV data (see §8.6.2 regarding KELT-6b), often necessitating an

impractical amount of conventional telescope time. Furthermore, some atmospheric

models (e.g. Langton & Laughlin 2008, Menou & Rauscher 2009) suggest that temporal

variations in thermal emission may exist due to planetary weather. Many secondary transit

NIR observations will be required to sort out the potential effects of planetary weather

1http://exoplanetarchive.ipac.caltech.edu
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TABLE 17
Summary of MORC time-series photometric observations of known transiting exoplanets.

Planet Name # Light Curves Planet Name # Light Curves
CoRoT-7b 1 HD 189733b 14
GJ 436b 3 HD 209458b 2

HAT-P-2b 1 Kepler-8b 1
HAT-P-3b 1 KELT-1b 6
HAT-P-4b 1 KELT-2Ab 1
HAT-P-6b 2 KELT-3b 1
HAT-P-8b 1 KELT-6b 7

HAT-P-10b 1 KELT-7b 2
HAT-P-11b 4 Qatar-1b 18
HAT-P-12b 2 Qatar-2b 2
HAT-P-13b 2 TrES-2b 3
HAT-P-14b 4 TrES-2b 4
HAT-P-15b 2 TrES-5b 1
HAT-P-16b 8 WASP-1b 5
HAT-P-19b 1 WASP-2b 3
HAT-P-20b 1 WASP-3b 1
HAT-P-21b 1 WASP-12b 23
HAT-P-22b 2 WASP-13b 3
HAT-P-23b 6 WASP-21b 3
HAT-P-24b 1 WASP-24b 1
HAT-P-26b 1 WASP-28b 1
HAT-P-27b 2 WASP-32b 1
HAT-P-29b 7 WASP-33b 6
HAT-P-30b 1 WASP-36b 1
HAT-P-32b 1 WASP-37b 1
HAT-P-34b 1 WASP-38b 2
HAT-P-36b 6 WASP-43b 1
HAT-P-37b 1 WASP-48b 2
HAT-P-39b 1 WASP-52b 1
HD 17156b 1 XO-1b 1
HD 97558b 1 XO-3b 5

HD 149026b 2 XO-4b 2
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from measurement inaccuracies in eclipse depth and the associated error.

If smaller telescopes such as MORC could produce observations in the NIR, much

progress could be made in the study of exoplanet thermal emission in a relatively short

amount of time. Furthermore, ∼ 0.6 m telescopes are ideally sized to produce

high-precision photometry for stars brighter than ∼ 10 − 13th magnitude in the band of

interest, if dark noise does not dominate for the requisite exposure time, and if systematics

are well controlled. Sullivan, Croll, & Simcoe (2014) have shown promising results from

on-sky testing with a camera they custom designed around a commercially available

InGaAs detector. Even better results should be achievable using commercially available

InGaAs cameras that are now available off-the-shelf with deep-cooling (−85 C with

thermoelectric cooling or −195 C with liquid nitrogen cooling). These cameras should be

capable of producing high-precision time-series photometry in the Y-band, J-band, and

part of the H-band. I plan to investigate the capability of these cameras to produce

∼ 1.0 − 2.0 mmag minute−1 NIR photometry for bright (J . 10) stars. I plan to also

investigate the limitations that systematics place on the detection of shallow primary

transit and secondary eclipse depths. This could open up to the community the ability to

perform small telescope NIR photometry in the same way that high-precision optical

photometry has been produced for the last 15 years on small telescopes.

10.3 The Transiting Exoplanet Survey Satellite

The bright systems being discovered by KELT are of high value for detailed

atmospheric characterizations. With current technology, only planets with host stars

having V . 10 are bright enough for detailed characterizations and atmospheric studies.

As of April 2015, only 26 transiting planets have been discovered that have V = 10 host

stars or brighter2. The Transiting Exoplanet Survey Satellite (TESS; Ricker et al. 2014) is

an upcoming space-based transit survey that is scheduled for launch in 2017 and will

search nearly the entire sky for planets transiting bright (IC ≈ 4 − 13) and nearby stars for a

2The Exoplanets Data Explorer at http://exoplanets.org
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period of two years. To enable the all-sky search, TESS has four identical cameras. Each

one has a lens diameter of 10.5 cm, resulting in a 24◦×24◦ unvignetted image on a

four-CCD mosaic. The combined field of view is 24◦×96◦. Each CCD has a 2048×2048

pixel array resulting in a pixel scale of 21′′ pixel−1, almost identical to the KELT pixel

scale.

TESS will observe stars for an interval ranging from one month to one year,

depending mainly on the star’s ecliptic latitude. Stars from 6◦ north of the ecliptic plane to

the northern ecliptic pole will be monitored for the first year. Stars from 6◦ south of the

ecliptic plane to the southern ecliptic pole will be monitored for the second year. All stars

in a field get at least one continuous month of coverage, while stars near the poles get

nearly a full year of coverage. TESS is expected to find more than a thousand planets

smaller than Neptune, including dozens that are comparable in size to the Earth.

There are significant opportunities to contribute to the TESS mission through

follow-up observations. Unlike most Kepler candidates, most TESS candidates will be

bright enough for the RV follow-up that is generally required to measure the mass of the

transiting object. Photometric follow-up should be useful as well for at least three reasons.

First, as with the KELT survey, more than one star will often be blended in the TESS

photometric aperture due to the 21′′ pixel scale. Higher resolution ground-based

telescopes will be required to confirm which star in the aperture is showing the transit and

to measure the unblended transit depth. Second, large parts of the sky are observed by

TESS for only about a month and the longest coverage is limited to a year. If only one or

two transit events are detected for a TESS transiting planet candidate, high-precision

ground-based photometry may be able to confirm that the event is periodic after TESS

coverage has ended. Third, TESS observes in a single wide-band filter, so no information

can be derived from the TESS data about the achromaticity of the transit depth. I have

demonstrated that cost-effective < 1 m aperture ground-based telescopes are capable of

delivering much of the data needed to help address all three issues for the TESS mission.

As mentioned in §1.6.2, the Kepler mission has now been re-purposed to a new
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mission called K2. Data from the first few fields of the K2 mission have already starting

producing planet discoveries. Since the K2 pixel scale is much finer than for TESS,

blending is not as much of a problem. However, since K2 is a monochomatic telescope

like TESS, and since each field is observed for at most ∼ 75 days, there may be

ground-based photometric follow-up opportunities for K2 as well.

10.4 James Webb Space Telescope

Current technology provides the capability to perform transmission and emission

spectroscopy of bright (V . 10) stars hosting hot Jupiter planets. However, reaching the

signal-to-noise ratio required to characterize the atmospheres of bright transiting terrestrial

planets through transmission or emission spectroscopy, which may reveal water or other

molecules considered important for life, will require higher precision instrumentation.

The James Webb Space Telescope (JWST; Gardner et al. 2006), currently scheduled to

launch in 2018, may provide the precision needed to characterize the atmospheres of some

terrestrial systems. JWST has a large 6.6 m aperture and is optimized for infrared

observations. Instrumentation includes a NIR camera, a NIR spectrograph, a camera with

a tunable filter covering the wavelength range 0.6 < λ< 5.0 µm, and a MIR instrument

capable of imaging and spectroscopy from 5.0 < λ< 29 µm.

Thirty percent of the sky is viewable by JWST for at least 197 days per year, and

all of the sky will have at least 51 days of continuous visibility each year. JWST has

continuous visibility of the sky within 5◦ of the north and south ecliptic poles, which are

also the regions with the longest TESS coverage.

10.5 Other Upcoming Space Telescopes

CHEOPS (CHaracterising ExOPlanets Satellite) is a European mission scheduled

for launch in 2017 and is dedicated to search for transits around bright stars already

known to host RV discovered planets and planets discovered by a new generation of

241



ground-based transit surveys. CHEOPS is a 32 cm telescope and is targeted to study stars

brighter than V < 12 and is designed to reach a precision of 150 ppm per minute for a

V = 9 star. PLATO (Planetary Transits and Oscillations of stars) is another planned

European spacecraft and is scheduled for launch in 2024. It will search for transiting

planets around bright stars (4 <V < 11) using 34 cameras that provide a total field of

view of 2250 deg2 per pointing. PLATO plans to observe up to 1,000,000 stars and detect

and characterize hundreds of small planets, and thousands of planets in the Neptune to gas

giant regime out to the habitable zone.

10.6 Final Thoughts

Clearly, the future of exoplanet research is aimed at bright stars hosting small

transiting planets, with the expectation of discovering many Earth-like planets in the

habitable zone. Current and near-future observatories will provide astronomers with the

ability to measure to high-precision the characteristics of these planets and their

atmospheres. The day when we can conclusively answer the question – "do conditions

exist on planets outside the solar system that could support life as we understand it here on

Earth?" – is surely drawing near. And, with continued technological innovations, creative

ideas, and the funding to support our scientific endeavors, we may soon know if life exists

outside the confines of a tiny blue world that orbits one of at least 100 billion stars that

orbit a super-massive black hole in the center of one of at least 100 billion galaxies in the

observable universe. This is undoubtedly an exciting and fascinating time to be involved

in astronomical research.
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