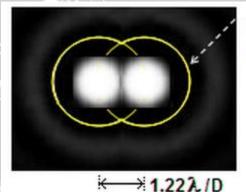
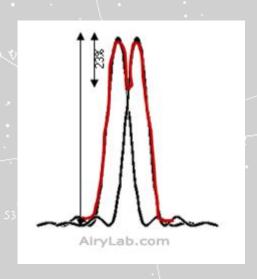
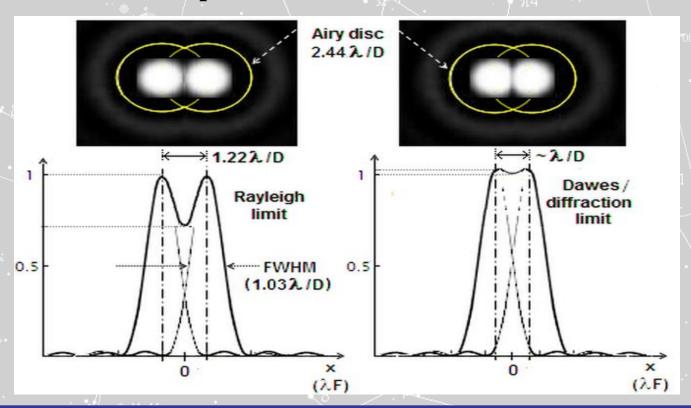


- Le pouvoir séparateur
 - Le pouvoir séparateur d'un instrument est proportionnel au diamètre.
 - On l'exprime en seconde d'arc (= 1°/3600).
 - En planétaire on cherche à exploiter tout le pouvoir séparateur de l'instrument
 - Le pouvoir séparateur est limité par la taille de la tache de diffraction ou tache d'Airy




deux étoiles

- Critère de Rayleigh
 - Les 2 étoiles sont à une distance égale à la moitié du disque central de la tache d'Airy
 - cette distance correspond à une séparation angulaire sur le ciel de
 - $1.22 \lambda / D$
 - · C'est le critère de Rayleigh
 - λ longueur d'onde en mètres
 - D diamètre en mètres
 - Angle en radians*
 - * $(2\pi \text{ radians} = 360^\circ)$
 - Le « creux de luminosité » entre les 2 étoiles est de 23%, c'est bien en visuel



Airy disc 2.44 λ/D

- D'autres critères de limite de résolution
 - La limite de diffraction conventionnelle λ / D -> creux 2%
 - La limite de Dawn : limite empirique de séparation de 2 étoiles blanches $1.03 \, \lambda \, / \, D$ (= FWHM)
 - La limite de Sparrow : fusion des 2 étoiles -> creux 0%

- Comparaison dans le vert
 - Le critère de Rayleigh 138 / D
 - La limite de Dawes 116 / D
 - La limite de diffraction conventionnelle 113.4 / D -> 2%
 - La limite de Sparrow 107/D -> 0%
- Limite de Rayleigh dans le bleu 120/D
 - C'est la limite souvent donnée pour le pouvoir séparateur d'un instrument
 - Adapté pour le visuel, mais en photo moderne on peut aller plus loin:
 - -> Les logiciels actuels permettent de pousser les contrastes
 - -> 120/D est calculé pour 478nm (bleu) mais les capteurs, les filtres et les optiques vont jusqu'à 400nm

- Critère de Shannon / Nyquist
 - Il faut échantillonner plus de 2 fois plus serré que le plus petit détail qu'on veut reproduire
- Formule de l'échantillonnage

$$e = (206 / F) \times P$$

- e en arcsec
- F focale en mm
- P taille d'un pixel en microns
- Le plus petit détail discernable dépend de la longueur d'onde
 - La limite de diffraction conventionnelle $\lambda / D \rightarrow creux 2\%$

- Echantillonnage maximum (il faut être strictement inférieur)
 - On applique Shannon/Nyquist à la formule de diffraction
 - $e = (\lambda / D) / 2$ en radian -> $e = \lambda / 8.7D$ en arcsec
- Formule simplifié du père Déso*
 - $e = \lambda / 10D$
 - e en arcsec
 - λ longueur d'onde la plus petite du signal
 - D diamètre en mm
 - Légèrement plus serré que la limite de diffraction conventionnelle λ/D, mais légèrement inférieur à la limite de Sparrow -> correspond à un creux de 1%

* c'est moi ;)

- Procédure de calcul
 - 1. on regarde la longueur d'onde la plus courte que laisse passer le filtre et l'optique -> Lamda
 - 2. connaissant le diamètre D de l'instrument, on calcule l'échantillonnage maximum avec la formule e=Lamda/10D
 - 3. connaissant la taille P des pixels on calcule la focale minimale nécessaire avec la formule e=(206/D) x P
 - 4. on en déduit la barlow minimum qu'il faut ajouter

remarque : bien sur il est tout a fait possible de faire de photos à une résolution inférieure si on n'a pas le matériel ou qu'on veut plus de champ ou que la turbu est trop mauvaise

- Longueurs d'ondes usuelles
 - Photo Planétaire:
 - Filtre de luminance ou Ir cutt : 400nm -> à choisir pour la couleur
 - Filtre Calcium: 396nm
 - · 21A:510nm
 - · 22A: 530nm
 - 23A: 550nm
 - 25A:580nm
 - · 29A: 600nm
 - Baader coloré rouge : 610nm
 - Baader Ir pass 680nm
 - Astronomik pro planet Ir pass: 742nm
 - Photo solaire :
 - · Filtre Hydrogène Alpha (Halpha): 656nm
 - Filtre Calcium: 396nm

Exemples

- Exemple 1 : photo planétaire avec un C9
- on veux faire une image de Jupiter avec un C9 et une QHY5L-II couleur et un filtre Ircut ou un filtre de luminance pour couper les Ir.
 - filtre L -> c'est un passe bande qui laisse passer les longueurs entre 700 et 400nm
 - \rightarrow lamda = 400nm
 - le C9 a un diamètre $\mathbf{D} = 235 \mathbf{mm}$
 - -> l'échantillonage à adopter est donc de e = 40/235 = 0,17" par pixel
 - la QHY5L-II a des pixels de taille $p = 3,75\mu$

on utilise la formule de l'échantillonnage (cf rappel ci dessous) pour calculer la focale minimale nécéssaire:

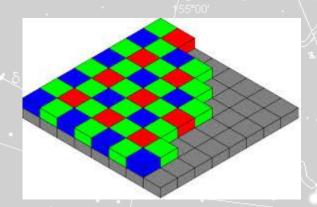
$$F = 206 \text{ x p / e} = 206 \text{ x } 3,75 / 0,17 = 4544 \text{mm}$$

Le C9 ayant une focale F = 2350 mm on prendra donc une barlow d'au moins $4544 / 2350 = x \ 1,93$ -> on prendra une **barlow X2**

Exemples

- Exemple 1 : photo planétaire avec un C9
- on veux faire une image de la lune avec un filtre orangé 21A (pour atténuer la turbu) avec un C9 et une QHY5L-II mono.
 - filtre 21A -> c'est un passe bas qui laisse passer les longueurs d'ondes plus grandes que 530nm -> lamda = 530nm
 - le C9 a un diamètre D = 235mm
 - -> l'échantillonage à adopter est donc de e = 53/235 = 0,226" par pixel
 - la QHY5L-II a des pixels de taille $p = 3,75\mu$

on utilise la formule de l'échantillonnage (cf rappel ci dessous) pour calculer la focale minimale nécéssaire:


$$F = 206 \text{ x p / e} = 206 \text{ x } 3,75 / 0,226 = 3418 \text{mm}$$

Le C9 ayant une focale F = 2350mm on prendra donc une barlow d'au moins 3418 / 2350 = x 1,454

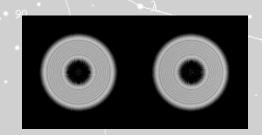
(on n'a donc pas intérêt à prendre une x2, mais essayer de trouver une barlow x1,5 qui donnera des poses plus courtes et un échantillonnage suffisant et plus de champ)

Impact des capteurs couleurs

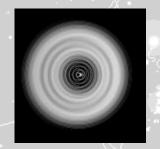
- La matrice de bayer
 - · Chaque pixel a un petit filtre rouge, vert ou bleu
 - il y a 2 fois plus de pixels verts que de bleus ou rouges
 - 4 motifs possibles répétés sur tout le capteur

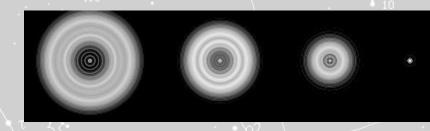
Débayérisation

Pour retrouver la composante en Rouge Vert et Bleu de chaque pixel, les logiciels utilisent les pixels adjacents et font une interpolation i.e. une « moyenne » pour les 2 autres couleurs.


Impact des capteurs couleurs

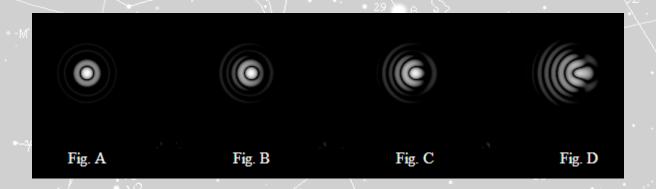
- Conséquence de la matrice de bayer sur l'échantillonnage
 - Les pixels rouges et bleus sont 2 fois moins serrés que les pixels d'un capteur monochrome
 - Les pixels verts sont au mieux 1.4 fois moins serrés que les pixels d'un capteur monochrome
 - -> il faudrait grossir 2 fois plus qu'avec un capteur monochrome pour échantillonner correctement des détails monochromatique (que bleu ou rouge ou vert)
 - -> en pratique on a très souvent un mélange de RVB, pas besoin de sur échantillonner beaucoup, sauf peut être sur Mars




La collimation

- La collimation se fait en 3 étapes
- Etape 1 : défocalisé (pour voir l'ombre du secondaire)
 - On dégrossit avec un laser, un cheshire
 - ou à l'œil avec un grossissement de x100

• **Etape 2** :



- Très peu défocalisé en intra ou extra, là où on voit le mieux
- On grossit beaucoup en commençant à 1x le diamètre et jusqu'à 3x le diamètre (x600 pour un 200mm)

La collimation

- La collimation se fait en 3 étapes
- Etape 3 : La figure d'Airy
 - On grossit 2 à 3 fois le diamètre
 - Visible que si la mise au point est parfait
 - Il faut très peu de turbulence
 - On visse une étoile près de la cible, le plus haut possible

Réglage du logiciel d'acquisition

Lucky imaging

- On va faire de très nombreuses photos, de courte durée. Le but est d'avoir quelques photos nettes dans les trous de turbu.
- On a donc intérêt a avoir un maximum de débit d'image de courte durée
- D'un autre coté, chaque image est affectée par le bruit de lecture du capteur. Plus on réduit le temps de pose, plus le rapport signal à bruit se dégrade
- En pratique on règle le temps de pose
 - 8 à 16ms pour Mars suivant les couleurs
 - 20 à 25ms pour Jupiter
 - 35ms pour Saturne

Réglage du logiciel d'acquisition

- Réglage du temps de pose et gain
- En pratique on règle le temps de pose
 - 8 à 16ms pour Mars suivant les couleurs
 - 20 à 25ms pour Jupiter
 - 35ms pour Saturne
- Puis on règle le gain de manière à ce que l'histogramme soit rempli à 80% environ

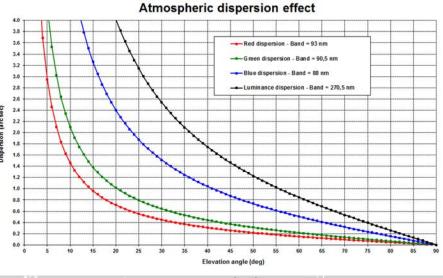
Intérêt des filtres

- Couleur
- Avec un capteur couleur il faut utiliser un filtre pour couper au moins les infrarouges
- Monochrome
- Avec un capteur monochrome, on peut utiliser des filtres pour luter contre la turbulence ou alors faires des images « scientifiques » dans certaines bandes (CH4 sur Jupiter)
 - Pour luter contre la turbulence
 - Filtre 23A
 - Filtre rouge baader
 - Filtre Ir pass baader 680nm
 - Filtre Ir pass Astronomi 742nm

Intérêt des filtres

Filtre rouge

Filtre Ir pass 680nm



Diffraction de l'atmosphère ADC

- Diffraction de l'atmosphère
- L'atmosphère fait un effet de prisme : elle sépare les couleurs verticalement
- D'autant plus sensible que la planète est basse et que l'atmosphère est

humide et la longueur d'onde petite

- ADC
- Correcteur de dispersion atmosphérique : 2 prismes qui génère un chromatisme inverse de celui de l'atmosphère
- Doit rester bien parallèle à l'horrizon

Conseils pratiques

- Les clés de la réussite d'une image en haute résolution
- Les plus important : une très bonne collimation, au moins l'étape 2 à 3fois le diamètre
- Une bonne mise en température du télescope, ça prends en général 2h
- Imager la planète le plus haut possible, i.e. près du méridien
- Imager les jours de faible turbulence : surveiller le scintillement des étoiles. Les jours de pollution aux particules sont favorables, c'est un peu jaune, mais super stable
- Éviter la turbulence locale : pas de source de chaleur (maison, voiture, humains ou autres animaux)

Annexe 2

• Lien intéressants

La Collimation par Thierry Legault http://legault.perso.sfr.fr/collim_fr.html

La difraction de l'atmosphère http://www.astrosurf.com/prostjp/Dispersion.html

